metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_deit_tiny_sgd_0001_fold2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.2
hushem_5x_deit_tiny_sgd_0001_fold2
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.5542
- Accuracy: 0.2
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.5719 | 1.0 | 27 | 1.7092 | 0.2222 |
1.5311 | 2.0 | 54 | 1.6949 | 0.2222 |
1.5151 | 3.0 | 81 | 1.6819 | 0.2222 |
1.5077 | 4.0 | 108 | 1.6712 | 0.2222 |
1.4707 | 5.0 | 135 | 1.6610 | 0.2222 |
1.4799 | 6.0 | 162 | 1.6507 | 0.2222 |
1.4704 | 7.0 | 189 | 1.6424 | 0.2 |
1.4902 | 8.0 | 216 | 1.6346 | 0.1778 |
1.4446 | 9.0 | 243 | 1.6280 | 0.1778 |
1.4231 | 10.0 | 270 | 1.6212 | 0.1778 |
1.4616 | 11.0 | 297 | 1.6153 | 0.1778 |
1.4153 | 12.0 | 324 | 1.6101 | 0.2 |
1.4152 | 13.0 | 351 | 1.6055 | 0.2 |
1.4531 | 14.0 | 378 | 1.6010 | 0.2 |
1.3945 | 15.0 | 405 | 1.5968 | 0.2 |
1.3852 | 16.0 | 432 | 1.5928 | 0.2 |
1.4109 | 17.0 | 459 | 1.5893 | 0.2 |
1.3754 | 18.0 | 486 | 1.5859 | 0.2 |
1.385 | 19.0 | 513 | 1.5829 | 0.2222 |
1.3607 | 20.0 | 540 | 1.5802 | 0.2222 |
1.3947 | 21.0 | 567 | 1.5776 | 0.2222 |
1.3764 | 22.0 | 594 | 1.5751 | 0.2222 |
1.382 | 23.0 | 621 | 1.5731 | 0.2222 |
1.3634 | 24.0 | 648 | 1.5711 | 0.2222 |
1.3778 | 25.0 | 675 | 1.5692 | 0.2222 |
1.3529 | 26.0 | 702 | 1.5678 | 0.2222 |
1.3485 | 27.0 | 729 | 1.5662 | 0.2222 |
1.3484 | 28.0 | 756 | 1.5647 | 0.2222 |
1.3554 | 29.0 | 783 | 1.5635 | 0.2222 |
1.3405 | 30.0 | 810 | 1.5624 | 0.2222 |
1.3634 | 31.0 | 837 | 1.5613 | 0.2222 |
1.3616 | 32.0 | 864 | 1.5602 | 0.2222 |
1.3289 | 33.0 | 891 | 1.5595 | 0.2222 |
1.3193 | 34.0 | 918 | 1.5588 | 0.2 |
1.3621 | 35.0 | 945 | 1.5580 | 0.2 |
1.3672 | 36.0 | 972 | 1.5575 | 0.2 |
1.3338 | 37.0 | 999 | 1.5569 | 0.2 |
1.3491 | 38.0 | 1026 | 1.5563 | 0.2 |
1.3543 | 39.0 | 1053 | 1.5559 | 0.2 |
1.3395 | 40.0 | 1080 | 1.5555 | 0.2 |
1.3385 | 41.0 | 1107 | 1.5553 | 0.2 |
1.3225 | 42.0 | 1134 | 1.5550 | 0.2 |
1.3557 | 43.0 | 1161 | 1.5547 | 0.2 |
1.3413 | 44.0 | 1188 | 1.5546 | 0.2 |
1.3386 | 45.0 | 1215 | 1.5544 | 0.2 |
1.3204 | 46.0 | 1242 | 1.5543 | 0.2 |
1.335 | 47.0 | 1269 | 1.5543 | 0.2 |
1.3373 | 48.0 | 1296 | 1.5542 | 0.2 |
1.3715 | 49.0 | 1323 | 1.5542 | 0.2 |
1.2935 | 50.0 | 1350 | 1.5542 | 0.2 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0