hkivancoral's picture
End of training
9127b4f
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_base_sgd_001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4888888888888889

hushem_5x_deit_base_sgd_001_fold2

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2313
  • Accuracy: 0.4889

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4159 1.0 27 1.4534 0.1333
1.3715 2.0 54 1.4329 0.1333
1.349 3.0 81 1.4161 0.1556
1.3491 4.0 108 1.4025 0.1556
1.3037 5.0 135 1.3915 0.2
1.2977 6.0 162 1.3813 0.2444
1.2881 7.0 189 1.3728 0.2889
1.2735 8.0 216 1.3643 0.3333
1.2461 9.0 243 1.3568 0.3556
1.2282 10.0 270 1.3495 0.3556
1.2197 11.0 297 1.3426 0.3556
1.1815 12.0 324 1.3361 0.3778
1.1874 13.0 351 1.3296 0.3778
1.1512 14.0 378 1.3234 0.3778
1.169 15.0 405 1.3177 0.4
1.1635 16.0 432 1.3122 0.4
1.1212 17.0 459 1.3068 0.4
1.1132 18.0 486 1.3013 0.4
1.0934 19.0 513 1.2960 0.4
1.0783 20.0 540 1.2914 0.4
1.0674 21.0 567 1.2869 0.4
1.0564 22.0 594 1.2826 0.4222
1.0602 23.0 621 1.2784 0.4444
1.0292 24.0 648 1.2744 0.4667
1.0348 25.0 675 1.2706 0.4667
1.0373 26.0 702 1.2671 0.4667
1.0143 27.0 729 1.2638 0.4667
1.0044 28.0 756 1.2607 0.4667
0.9861 29.0 783 1.2578 0.4667
1.0112 30.0 810 1.2551 0.4667
0.9561 31.0 837 1.2525 0.4667
0.9839 32.0 864 1.2500 0.4667
0.9768 33.0 891 1.2477 0.4667
0.936 34.0 918 1.2456 0.4667
0.9571 35.0 945 1.2436 0.4667
0.9423 36.0 972 1.2418 0.4667
0.9413 37.0 999 1.2401 0.4667
0.9304 38.0 1026 1.2386 0.4889
0.9391 39.0 1053 1.2372 0.4889
0.9013 40.0 1080 1.2360 0.4889
0.9198 41.0 1107 1.2349 0.4889
0.9119 42.0 1134 1.2340 0.4889
0.9214 43.0 1161 1.2332 0.4889
0.8928 44.0 1188 1.2325 0.4889
0.9196 45.0 1215 1.2320 0.4889
0.906 46.0 1242 1.2316 0.4889
0.9098 47.0 1269 1.2314 0.4889
0.9113 48.0 1296 1.2313 0.4889
0.9534 49.0 1323 1.2313 0.4889
0.8999 50.0 1350 1.2313 0.4889

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0