metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_deit_base_adamax_00001_fold4
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9285714285714286
hushem_5x_deit_base_adamax_00001_fold4
This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.2070
- Accuracy: 0.9286
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.2779 | 1.0 | 28 | 1.2578 | 0.5 |
0.9904 | 2.0 | 56 | 1.0864 | 0.5952 |
0.7136 | 3.0 | 84 | 0.8757 | 0.7381 |
0.5283 | 4.0 | 112 | 0.7271 | 0.8095 |
0.3401 | 5.0 | 140 | 0.5900 | 0.8333 |
0.2667 | 6.0 | 168 | 0.4970 | 0.8571 |
0.1719 | 7.0 | 196 | 0.4291 | 0.8810 |
0.1351 | 8.0 | 224 | 0.3736 | 0.8810 |
0.0756 | 9.0 | 252 | 0.3239 | 0.8571 |
0.0457 | 10.0 | 280 | 0.2724 | 0.9286 |
0.0311 | 11.0 | 308 | 0.2513 | 0.9286 |
0.0183 | 12.0 | 336 | 0.2397 | 0.9524 |
0.0115 | 13.0 | 364 | 0.2242 | 0.9286 |
0.0092 | 14.0 | 392 | 0.2124 | 0.9286 |
0.0064 | 15.0 | 420 | 0.2027 | 0.9286 |
0.0052 | 16.0 | 448 | 0.2099 | 0.9286 |
0.0048 | 17.0 | 476 | 0.2208 | 0.9286 |
0.0041 | 18.0 | 504 | 0.2156 | 0.9286 |
0.0036 | 19.0 | 532 | 0.2081 | 0.9286 |
0.0034 | 20.0 | 560 | 0.2100 | 0.9286 |
0.003 | 21.0 | 588 | 0.2099 | 0.9286 |
0.0028 | 22.0 | 616 | 0.2113 | 0.9286 |
0.0024 | 23.0 | 644 | 0.2110 | 0.9286 |
0.0023 | 24.0 | 672 | 0.2106 | 0.9286 |
0.0022 | 25.0 | 700 | 0.2101 | 0.9286 |
0.002 | 26.0 | 728 | 0.2088 | 0.9286 |
0.002 | 27.0 | 756 | 0.2066 | 0.9286 |
0.0018 | 28.0 | 784 | 0.2096 | 0.9286 |
0.0018 | 29.0 | 812 | 0.2064 | 0.9286 |
0.0016 | 30.0 | 840 | 0.2088 | 0.9286 |
0.0016 | 31.0 | 868 | 0.2088 | 0.9286 |
0.0015 | 32.0 | 896 | 0.2078 | 0.9286 |
0.0015 | 33.0 | 924 | 0.2057 | 0.9286 |
0.0014 | 34.0 | 952 | 0.2073 | 0.9286 |
0.0014 | 35.0 | 980 | 0.2070 | 0.9286 |
0.0014 | 36.0 | 1008 | 0.2069 | 0.9286 |
0.0013 | 37.0 | 1036 | 0.2071 | 0.9286 |
0.0013 | 38.0 | 1064 | 0.2055 | 0.9286 |
0.0013 | 39.0 | 1092 | 0.2077 | 0.9286 |
0.0011 | 40.0 | 1120 | 0.2076 | 0.9286 |
0.0012 | 41.0 | 1148 | 0.2068 | 0.9286 |
0.0012 | 42.0 | 1176 | 0.2086 | 0.9286 |
0.0011 | 43.0 | 1204 | 0.2084 | 0.9286 |
0.0011 | 44.0 | 1232 | 0.2077 | 0.9286 |
0.0011 | 45.0 | 1260 | 0.2078 | 0.9286 |
0.0011 | 46.0 | 1288 | 0.2072 | 0.9286 |
0.0011 | 47.0 | 1316 | 0.2070 | 0.9286 |
0.0011 | 48.0 | 1344 | 0.2070 | 0.9286 |
0.0012 | 49.0 | 1372 | 0.2070 | 0.9286 |
0.0011 | 50.0 | 1400 | 0.2070 | 0.9286 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0