hkivancoral's picture
End of training
b4eb243
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_base_adamax_00001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8372093023255814

hushem_5x_deit_base_adamax_00001_fold3

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4419
  • Accuracy: 0.8372

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3275 1.0 28 1.2372 0.5814
1.0641 2.0 56 1.0484 0.6977
0.7591 3.0 84 0.8760 0.7442
0.5652 4.0 112 0.7360 0.8140
0.3906 5.0 140 0.6489 0.8372
0.3059 6.0 168 0.5954 0.8605
0.1994 7.0 196 0.5269 0.8372
0.134 8.0 224 0.5174 0.8605
0.0783 9.0 252 0.4602 0.8605
0.0454 10.0 280 0.4569 0.8372
0.0318 11.0 308 0.4393 0.8837
0.018 12.0 336 0.4222 0.8605
0.0132 13.0 364 0.4453 0.8837
0.0088 14.0 392 0.4098 0.8837
0.0068 15.0 420 0.4226 0.8605
0.0058 16.0 448 0.4268 0.8605
0.0055 17.0 476 0.4132 0.8605
0.0045 18.0 504 0.4342 0.8605
0.004 19.0 532 0.4228 0.8605
0.0033 20.0 560 0.4271 0.8372
0.0033 21.0 588 0.4254 0.8372
0.0029 22.0 616 0.4205 0.8372
0.0027 23.0 644 0.4207 0.8372
0.0024 24.0 672 0.4248 0.8605
0.0022 25.0 700 0.4229 0.8372
0.0021 26.0 728 0.4293 0.8372
0.002 27.0 756 0.4267 0.8372
0.002 28.0 784 0.4239 0.8605
0.0018 29.0 812 0.4273 0.8372
0.0018 30.0 840 0.4313 0.8372
0.0016 31.0 868 0.4289 0.8372
0.0016 32.0 896 0.4329 0.8372
0.0016 33.0 924 0.4313 0.8372
0.0014 34.0 952 0.4362 0.8372
0.0016 35.0 980 0.4336 0.8372
0.0014 36.0 1008 0.4353 0.8372
0.0014 37.0 1036 0.4446 0.8372
0.0013 38.0 1064 0.4482 0.8372
0.0013 39.0 1092 0.4496 0.8372
0.0012 40.0 1120 0.4442 0.8372
0.0013 41.0 1148 0.4456 0.8372
0.0013 42.0 1176 0.4450 0.8372
0.0012 43.0 1204 0.4433 0.8372
0.0012 44.0 1232 0.4424 0.8372
0.0011 45.0 1260 0.4418 0.8372
0.0011 46.0 1288 0.4417 0.8372
0.0011 47.0 1316 0.4421 0.8372
0.0011 48.0 1344 0.4419 0.8372
0.0011 49.0 1372 0.4419 0.8372
0.0011 50.0 1400 0.4419 0.8372

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0