metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_beit_base_rms_0001_fold4
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7857142857142857
hushem_5x_beit_base_rms_0001_fold4
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.8159
- Accuracy: 0.7857
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.4247 | 1.0 | 28 | 1.3411 | 0.2381 |
1.3595 | 2.0 | 56 | 1.2501 | 0.4286 |
1.3116 | 3.0 | 84 | 1.5240 | 0.2381 |
1.303 | 4.0 | 112 | 1.0491 | 0.5238 |
1.1942 | 5.0 | 140 | 0.8861 | 0.7143 |
1.1712 | 6.0 | 168 | 0.9106 | 0.5238 |
0.977 | 7.0 | 196 | 1.1447 | 0.6905 |
0.9351 | 8.0 | 224 | 0.7191 | 0.7619 |
0.8453 | 9.0 | 252 | 1.3331 | 0.5714 |
0.8831 | 10.0 | 280 | 0.8305 | 0.6905 |
0.8349 | 11.0 | 308 | 0.6872 | 0.7619 |
0.845 | 12.0 | 336 | 0.7545 | 0.7619 |
0.784 | 13.0 | 364 | 0.7961 | 0.7857 |
0.7404 | 14.0 | 392 | 0.6338 | 0.8095 |
0.6277 | 15.0 | 420 | 0.7200 | 0.7143 |
0.6386 | 16.0 | 448 | 0.7383 | 0.8095 |
0.6167 | 17.0 | 476 | 0.5440 | 0.8095 |
0.5129 | 18.0 | 504 | 0.7061 | 0.7619 |
0.3836 | 19.0 | 532 | 0.7181 | 0.7381 |
0.3202 | 20.0 | 560 | 0.4277 | 0.8095 |
0.1958 | 21.0 | 588 | 1.1637 | 0.7381 |
0.2343 | 22.0 | 616 | 1.0581 | 0.8095 |
0.2016 | 23.0 | 644 | 0.8968 | 0.7857 |
0.116 | 24.0 | 672 | 1.0426 | 0.7857 |
0.1027 | 25.0 | 700 | 0.6841 | 0.8333 |
0.1133 | 26.0 | 728 | 0.8260 | 0.8095 |
0.1258 | 27.0 | 756 | 1.3215 | 0.7619 |
0.0595 | 28.0 | 784 | 1.0509 | 0.8810 |
0.0945 | 29.0 | 812 | 1.3868 | 0.7857 |
0.0022 | 30.0 | 840 | 1.7553 | 0.8095 |
0.0004 | 31.0 | 868 | 1.9423 | 0.7857 |
0.0466 | 32.0 | 896 | 2.0945 | 0.8095 |
0.0367 | 33.0 | 924 | 1.6928 | 0.8095 |
0.1032 | 34.0 | 952 | 1.3572 | 0.8571 |
0.0331 | 35.0 | 980 | 2.0437 | 0.8095 |
0.0001 | 36.0 | 1008 | 2.0414 | 0.8333 |
0.0286 | 37.0 | 1036 | 2.0546 | 0.7619 |
0.009 | 38.0 | 1064 | 2.8381 | 0.7857 |
0.0573 | 39.0 | 1092 | 2.4470 | 0.7857 |
0.0497 | 40.0 | 1120 | 1.8192 | 0.7857 |
0.0003 | 41.0 | 1148 | 2.1421 | 0.7143 |
0.0003 | 42.0 | 1176 | 2.2125 | 0.7381 |
0.0001 | 43.0 | 1204 | 2.1555 | 0.7619 |
0.0002 | 44.0 | 1232 | 1.8154 | 0.7381 |
0.0197 | 45.0 | 1260 | 1.7188 | 0.7381 |
0.0002 | 46.0 | 1288 | 1.6637 | 0.8095 |
0.0152 | 47.0 | 1316 | 1.6954 | 0.8095 |
0.0001 | 48.0 | 1344 | 1.8153 | 0.7857 |
0.0002 | 49.0 | 1372 | 1.8159 | 0.7857 |
0.0 | 50.0 | 1400 | 1.8159 | 0.7857 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0