hkivancoral's picture
End of training
02d2fe3
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_beit_base_rms_0001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6744186046511628

hushem_5x_beit_base_rms_0001_fold3

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0271
  • Accuracy: 0.6744

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4187 1.0 28 1.4291 0.2558
1.401 2.0 56 1.4569 0.2558
1.367 3.0 84 1.2989 0.2791
1.3068 4.0 112 1.1706 0.5116
1.282 5.0 140 1.1869 0.5581
1.1177 6.0 168 0.8916 0.7442
0.8904 7.0 196 0.7798 0.7209
0.9449 8.0 224 0.6587 0.7674
0.8708 9.0 252 1.0524 0.5814
0.9352 10.0 280 0.7664 0.6744
0.8718 11.0 308 0.6191 0.7907
0.7977 12.0 336 1.1991 0.6512
0.8081 13.0 364 0.7062 0.7674
0.7399 14.0 392 0.7130 0.6744
0.8202 15.0 420 0.7484 0.6977
0.7069 16.0 448 0.6665 0.6977
0.6169 17.0 476 0.7828 0.6279
0.6766 18.0 504 0.9849 0.5814
0.6876 19.0 532 0.7015 0.7442
0.5123 20.0 560 0.9230 0.7442
0.4885 21.0 588 0.9671 0.6279
0.5212 22.0 616 1.2712 0.6744
0.5047 23.0 644 0.7902 0.6512
0.4047 24.0 672 1.3996 0.7209
0.361 25.0 700 1.1508 0.6279
0.362 26.0 728 1.0709 0.6279
0.3752 27.0 756 0.9894 0.6512
0.2958 28.0 784 1.2219 0.6279
0.3016 29.0 812 0.8154 0.6977
0.2083 30.0 840 1.2432 0.6047
0.2249 31.0 868 1.5401 0.6047
0.1443 32.0 896 1.3193 0.6279
0.1501 33.0 924 1.1707 0.6977
0.1715 34.0 952 1.1677 0.7442
0.2795 35.0 980 1.2992 0.6744
0.1174 36.0 1008 1.6643 0.6744
0.1132 37.0 1036 1.7522 0.6279
0.0738 38.0 1064 1.6182 0.6744
0.0433 39.0 1092 2.1223 0.6512
0.0483 40.0 1120 2.5522 0.5814
0.0333 41.0 1148 1.8374 0.6977
0.0107 42.0 1176 1.9629 0.6744
0.013 43.0 1204 1.6900 0.7209
0.0316 44.0 1232 2.1881 0.6512
0.0272 45.0 1260 1.8428 0.6744
0.0298 46.0 1288 1.7049 0.7674
0.0196 47.0 1316 1.9117 0.6744
0.0084 48.0 1344 2.0336 0.6744
0.0059 49.0 1372 2.0271 0.6744
0.0065 50.0 1400 2.0271 0.6744

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0