hkivancoral's picture
End of training
bb3fb96
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_beit_base_rms_00001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8666666666666667

hushem_5x_beit_base_rms_00001_fold2

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8184
  • Accuracy: 0.8667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6865 1.0 27 0.7969 0.7556
0.1615 2.0 54 0.9353 0.7778
0.041 3.0 81 1.0745 0.6444
0.0119 4.0 108 1.0481 0.7333
0.0095 5.0 135 0.6063 0.8667
0.0013 6.0 162 0.6520 0.8444
0.0015 7.0 189 0.7604 0.8667
0.0013 8.0 216 0.7595 0.8444
0.0008 9.0 243 0.8299 0.8444
0.0008 10.0 270 0.6509 0.8444
0.0009 11.0 297 0.7989 0.8444
0.0002 12.0 324 0.8458 0.8444
0.0005 13.0 351 0.6321 0.8667
0.0002 14.0 378 0.6972 0.8444
0.0002 15.0 405 0.7426 0.8667
0.0005 16.0 432 0.9776 0.8
0.0023 17.0 459 1.0180 0.8
0.0003 18.0 486 1.1105 0.7778
0.0006 19.0 513 0.9919 0.7556
0.0002 20.0 540 1.0177 0.8
0.0012 21.0 567 0.9992 0.8444
0.0003 22.0 594 0.9760 0.8444
0.0047 23.0 621 0.9891 0.8
0.0061 24.0 648 0.9730 0.8222
0.0002 25.0 675 0.8247 0.8222
0.0001 26.0 702 0.8270 0.8667
0.0001 27.0 729 0.7978 0.8222
0.0 28.0 756 0.8136 0.8444
0.0001 29.0 783 0.8553 0.8444
0.0001 30.0 810 0.9423 0.8444
0.0001 31.0 837 0.9286 0.8222
0.0001 32.0 864 0.9464 0.8222
0.0002 33.0 891 0.8713 0.8444
0.0001 34.0 918 0.8762 0.8444
0.0001 35.0 945 0.9092 0.8667
0.0 36.0 972 0.9547 0.8444
0.0 37.0 999 0.9283 0.8444
0.0 38.0 1026 0.8639 0.8444
0.0001 39.0 1053 0.8477 0.8667
0.0 40.0 1080 0.8432 0.8667
0.0 41.0 1107 0.8325 0.8667
0.0 42.0 1134 0.7851 0.8667
0.0003 43.0 1161 0.7875 0.8667
0.0 44.0 1188 0.7888 0.8667
0.0001 45.0 1215 0.8006 0.8889
0.0001 46.0 1242 0.8075 0.8889
0.0001 47.0 1269 0.8158 0.8889
0.0 48.0 1296 0.8184 0.8667
0.0002 49.0 1323 0.8184 0.8667
0.0001 50.0 1350 0.8184 0.8667

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0