hkivancoral's picture
End of training
cc7ed42
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_40x_deit_tiny_rms_0001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8780487804878049

hushem_40x_deit_tiny_rms_0001_fold5

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8832
  • Accuracy: 0.8780

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1509 1.0 220 0.5608 0.8537
0.0292 2.0 440 0.1504 0.9512
0.1009 3.0 660 0.7468 0.8537
0.011 4.0 880 0.6340 0.7805
0.0031 5.0 1100 0.8446 0.8293
0.0646 6.0 1320 1.0420 0.8537
0.0678 7.0 1540 0.6521 0.8293
0.0002 8.0 1760 1.1011 0.8537
0.0677 9.0 1980 1.2605 0.8049
0.0002 10.0 2200 0.4029 0.9024
0.0011 11.0 2420 0.5279 0.9512
0.0002 12.0 2640 0.5883 0.9268
0.0801 13.0 2860 1.0161 0.8293
0.0 14.0 3080 0.7618 0.9024
0.0 15.0 3300 0.7876 0.8293
0.0144 16.0 3520 0.6802 0.8780
0.0032 17.0 3740 0.2440 0.9268
0.0 18.0 3960 0.4384 0.8293
0.0 19.0 4180 0.6787 0.8537
0.0 20.0 4400 0.6527 0.8293
0.0 21.0 4620 0.6512 0.8537
0.0 22.0 4840 0.6749 0.8537
0.0 23.0 5060 0.6838 0.8537
0.0 24.0 5280 0.7554 0.8537
0.0 25.0 5500 0.8097 0.8780
0.0 26.0 5720 0.8183 0.8780
0.0 27.0 5940 0.8490 0.8780
0.0 28.0 6160 0.9053 0.8537
0.0 29.0 6380 0.9213 0.8537
0.0 30.0 6600 0.9237 0.8780
0.0 31.0 6820 0.9293 0.8537
0.0 32.0 7040 0.9309 0.8780
0.0 33.0 7260 0.9345 0.8780
0.0 34.0 7480 0.9273 0.8780
0.0 35.0 7700 0.9432 0.8780
0.0 36.0 7920 0.9371 0.8780
0.0 37.0 8140 0.9224 0.9024
0.0 38.0 8360 0.9410 0.8780
0.0 39.0 8580 0.9241 0.8780
0.0 40.0 8800 0.9144 0.8780
0.0 41.0 9020 0.9167 0.8780
0.0 42.0 9240 0.8992 0.8780
0.0 43.0 9460 0.9050 0.8780
0.0 44.0 9680 0.8956 0.8780
0.0 45.0 9900 0.8902 0.8780
0.0 46.0 10120 0.8925 0.8780
0.0 47.0 10340 0.8847 0.8780
0.0 48.0 10560 0.8839 0.8780
0.0 49.0 10780 0.8833 0.8780
0.0 50.0 11000 0.8832 0.8780

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2