metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_40x_deit_tiny_adamax_001_fold1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7777777777777778
hushem_40x_deit_tiny_adamax_001_fold1
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 2.2164
- Accuracy: 0.7778
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.1419 | 1.0 | 215 | 1.1495 | 0.6667 |
0.2513 | 2.0 | 430 | 1.6987 | 0.6667 |
0.0735 | 3.0 | 645 | 1.5261 | 0.7556 |
0.0999 | 4.0 | 860 | 1.1841 | 0.7556 |
0.0224 | 5.0 | 1075 | 1.9099 | 0.7556 |
0.0347 | 6.0 | 1290 | 1.5424 | 0.7778 |
0.0153 | 7.0 | 1505 | 2.1022 | 0.7111 |
0.0692 | 8.0 | 1720 | 2.1279 | 0.6667 |
0.032 | 9.0 | 1935 | 1.4685 | 0.8 |
0.012 | 10.0 | 2150 | 1.8478 | 0.7333 |
0.0122 | 11.0 | 2365 | 2.0002 | 0.7333 |
0.0062 | 12.0 | 2580 | 1.8733 | 0.8 |
0.0592 | 13.0 | 2795 | 1.7430 | 0.7778 |
0.0 | 14.0 | 3010 | 1.4594 | 0.8 |
0.0388 | 15.0 | 3225 | 2.5836 | 0.6889 |
0.0003 | 16.0 | 3440 | 2.4594 | 0.6889 |
0.0001 | 17.0 | 3655 | 1.4002 | 0.8222 |
0.0004 | 18.0 | 3870 | 2.8500 | 0.6667 |
0.0028 | 19.0 | 4085 | 2.8669 | 0.6889 |
0.0 | 20.0 | 4300 | 1.9979 | 0.7556 |
0.0 | 21.0 | 4515 | 1.9762 | 0.7778 |
0.0 | 22.0 | 4730 | 1.9694 | 0.7778 |
0.0 | 23.0 | 4945 | 1.9654 | 0.7778 |
0.0 | 24.0 | 5160 | 1.9624 | 0.7778 |
0.0 | 25.0 | 5375 | 1.9616 | 0.7778 |
0.0 | 26.0 | 5590 | 1.9605 | 0.8 |
0.0 | 27.0 | 5805 | 1.9607 | 0.8 |
0.0 | 28.0 | 6020 | 1.9631 | 0.7778 |
0.0 | 29.0 | 6235 | 1.9640 | 0.7778 |
0.0 | 30.0 | 6450 | 1.9713 | 0.7778 |
0.0 | 31.0 | 6665 | 1.9756 | 0.7778 |
0.0 | 32.0 | 6880 | 1.9854 | 0.7778 |
0.0 | 33.0 | 7095 | 1.9940 | 0.7778 |
0.0 | 34.0 | 7310 | 2.0033 | 0.7778 |
0.0 | 35.0 | 7525 | 2.0146 | 0.7778 |
0.0 | 36.0 | 7740 | 2.0257 | 0.7778 |
0.0 | 37.0 | 7955 | 2.0418 | 0.7778 |
0.0 | 38.0 | 8170 | 2.0556 | 0.7778 |
0.0 | 39.0 | 8385 | 2.0718 | 0.7778 |
0.0 | 40.0 | 8600 | 2.0881 | 0.7778 |
0.0 | 41.0 | 8815 | 2.1047 | 0.7778 |
0.0 | 42.0 | 9030 | 2.1211 | 0.7778 |
0.0 | 43.0 | 9245 | 2.1375 | 0.7778 |
0.0 | 44.0 | 9460 | 2.1536 | 0.7778 |
0.0 | 45.0 | 9675 | 2.1694 | 0.7778 |
0.0 | 46.0 | 9890 | 2.1838 | 0.7778 |
0.0 | 47.0 | 10105 | 2.1973 | 0.7778 |
0.0 | 48.0 | 10320 | 2.2074 | 0.7778 |
0.0 | 49.0 | 10535 | 2.2141 | 0.7778 |
0.0 | 50.0 | 10750 | 2.2164 | 0.7778 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.1+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2