hkivancoral's picture
End of training
e222bda
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_40x_deit_tiny_adamax_001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7777777777777778

hushem_40x_deit_tiny_adamax_001_fold1

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2164
  • Accuracy: 0.7778

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1419 1.0 215 1.1495 0.6667
0.2513 2.0 430 1.6987 0.6667
0.0735 3.0 645 1.5261 0.7556
0.0999 4.0 860 1.1841 0.7556
0.0224 5.0 1075 1.9099 0.7556
0.0347 6.0 1290 1.5424 0.7778
0.0153 7.0 1505 2.1022 0.7111
0.0692 8.0 1720 2.1279 0.6667
0.032 9.0 1935 1.4685 0.8
0.012 10.0 2150 1.8478 0.7333
0.0122 11.0 2365 2.0002 0.7333
0.0062 12.0 2580 1.8733 0.8
0.0592 13.0 2795 1.7430 0.7778
0.0 14.0 3010 1.4594 0.8
0.0388 15.0 3225 2.5836 0.6889
0.0003 16.0 3440 2.4594 0.6889
0.0001 17.0 3655 1.4002 0.8222
0.0004 18.0 3870 2.8500 0.6667
0.0028 19.0 4085 2.8669 0.6889
0.0 20.0 4300 1.9979 0.7556
0.0 21.0 4515 1.9762 0.7778
0.0 22.0 4730 1.9694 0.7778
0.0 23.0 4945 1.9654 0.7778
0.0 24.0 5160 1.9624 0.7778
0.0 25.0 5375 1.9616 0.7778
0.0 26.0 5590 1.9605 0.8
0.0 27.0 5805 1.9607 0.8
0.0 28.0 6020 1.9631 0.7778
0.0 29.0 6235 1.9640 0.7778
0.0 30.0 6450 1.9713 0.7778
0.0 31.0 6665 1.9756 0.7778
0.0 32.0 6880 1.9854 0.7778
0.0 33.0 7095 1.9940 0.7778
0.0 34.0 7310 2.0033 0.7778
0.0 35.0 7525 2.0146 0.7778
0.0 36.0 7740 2.0257 0.7778
0.0 37.0 7955 2.0418 0.7778
0.0 38.0 8170 2.0556 0.7778
0.0 39.0 8385 2.0718 0.7778
0.0 40.0 8600 2.0881 0.7778
0.0 41.0 8815 2.1047 0.7778
0.0 42.0 9030 2.1211 0.7778
0.0 43.0 9245 2.1375 0.7778
0.0 44.0 9460 2.1536 0.7778
0.0 45.0 9675 2.1694 0.7778
0.0 46.0 9890 2.1838 0.7778
0.0 47.0 10105 2.1973 0.7778
0.0 48.0 10320 2.2074 0.7778
0.0 49.0 10535 2.2141 0.7778
0.0 50.0 10750 2.2164 0.7778

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2