hkivancoral's picture
End of training
9b9f532
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_40x_deit_base_rms_001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5581395348837209

hushem_40x_deit_base_rms_001_fold3

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 4.0356
  • Accuracy: 0.5581

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1943 1.0 217 1.3862 0.3488
1.2108 2.0 434 1.3456 0.3721
0.8764 3.0 651 1.3683 0.4884
0.7995 4.0 868 0.8441 0.5814
0.8665 5.0 1085 1.2083 0.5116
0.7433 6.0 1302 0.7858 0.7209
0.7205 7.0 1519 0.8439 0.6744
0.6415 8.0 1736 0.6198 0.6512
0.6773 9.0 1953 0.8169 0.6744
0.5449 10.0 2170 0.8224 0.6512
0.5225 11.0 2387 0.7556 0.7209
0.5268 12.0 2604 0.8703 0.6744
0.41 13.0 2821 0.7919 0.6512
0.4695 14.0 3038 0.9473 0.6744
0.3173 15.0 3255 1.2235 0.6512
0.3283 16.0 3472 1.3091 0.6512
0.3212 17.0 3689 1.0773 0.6047
0.3662 18.0 3906 0.9193 0.6279
0.3712 19.0 4123 0.9811 0.6744
0.3483 20.0 4340 1.5620 0.5814
0.2594 21.0 4557 1.8035 0.5814
0.3019 22.0 4774 1.3880 0.6744
0.2498 23.0 4991 1.6113 0.5814
0.2349 24.0 5208 1.2780 0.6047
0.1589 25.0 5425 1.6674 0.6512
0.2341 26.0 5642 1.6966 0.6512
0.1986 27.0 5859 1.4673 0.6047
0.1141 28.0 6076 1.6993 0.6512
0.1291 29.0 6293 2.0265 0.5581
0.1273 30.0 6510 1.8689 0.6279
0.0887 31.0 6727 1.4863 0.6977
0.101 32.0 6944 2.2258 0.6279
0.09 33.0 7161 1.6918 0.5814
0.063 34.0 7378 2.4040 0.5349
0.0263 35.0 7595 2.2869 0.5814
0.0357 36.0 7812 2.0118 0.6047
0.033 37.0 8029 2.5046 0.6279
0.0417 38.0 8246 2.0462 0.6512
0.0049 39.0 8463 3.1349 0.5814
0.0034 40.0 8680 2.4922 0.6279
0.0115 41.0 8897 2.7021 0.5581
0.0248 42.0 9114 3.1496 0.5116
0.0078 43.0 9331 2.6336 0.6279
0.0022 44.0 9548 3.2458 0.5349
0.0015 45.0 9765 3.3966 0.5349
0.0031 46.0 9982 4.1353 0.5116
0.0 47.0 10199 3.5481 0.5814
0.0002 48.0 10416 3.8712 0.5349
0.0 49.0 10633 4.0305 0.5581
0.0 50.0 10850 4.0356 0.5581

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2