hkivancoral's picture
End of training
9844916
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_small_sgd_001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.2558139534883721

hushem_1x_deit_small_sgd_001_fold3

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3255
  • Accuracy: 0.2558

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.5642 0.2326
1.4806 2.0 12 1.5332 0.3256
1.4806 3.0 18 1.5110 0.3256
1.4127 4.0 24 1.4910 0.3256
1.3859 5.0 30 1.4734 0.3256
1.3859 6.0 36 1.4581 0.3256
1.372 7.0 42 1.4448 0.3256
1.372 8.0 48 1.4360 0.3256
1.3407 9.0 54 1.4268 0.3256
1.3476 10.0 60 1.4184 0.3256
1.3476 11.0 66 1.4115 0.3256
1.3176 12.0 72 1.4055 0.3488
1.3176 13.0 78 1.3989 0.3488
1.3009 14.0 84 1.3926 0.3256
1.3032 15.0 90 1.3870 0.3256
1.3032 16.0 96 1.3815 0.3256
1.2893 17.0 102 1.3768 0.3256
1.2893 18.0 108 1.3723 0.3023
1.252 19.0 114 1.3680 0.3023
1.2643 20.0 120 1.3638 0.3023
1.2643 21.0 126 1.3601 0.2791
1.2642 22.0 132 1.3567 0.2791
1.2642 23.0 138 1.3535 0.2791
1.2369 24.0 144 1.3502 0.2791
1.2315 25.0 150 1.3476 0.2791
1.2315 26.0 156 1.3450 0.2791
1.2236 27.0 162 1.3424 0.2558
1.2236 28.0 168 1.3403 0.2558
1.2327 29.0 174 1.3382 0.2558
1.2254 30.0 180 1.3363 0.2558
1.2254 31.0 186 1.3347 0.2558
1.2165 32.0 192 1.3331 0.2558
1.2165 33.0 198 1.3315 0.2558
1.2003 34.0 204 1.3303 0.2558
1.2034 35.0 210 1.3292 0.2558
1.2034 36.0 216 1.3282 0.2558
1.2052 37.0 222 1.3273 0.2558
1.2052 38.0 228 1.3266 0.2558
1.2216 39.0 234 1.3261 0.2558
1.2003 40.0 240 1.3258 0.2558
1.2003 41.0 246 1.3256 0.2558
1.1856 42.0 252 1.3255 0.2558
1.1856 43.0 258 1.3255 0.2558
1.2091 44.0 264 1.3255 0.2558
1.1987 45.0 270 1.3255 0.2558
1.1987 46.0 276 1.3255 0.2558
1.1885 47.0 282 1.3255 0.2558
1.1885 48.0 288 1.3255 0.2558
1.2076 49.0 294 1.3255 0.2558
1.2139 50.0 300 1.3255 0.2558

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1