hkivancoral's picture
End of training
c17770c
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_base_rms_001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6444444444444445

hushem_1x_deit_base_rms_001_fold2

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0357
  • Accuracy: 0.6444

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 5.4375 0.2667
5.152 2.0 12 2.4176 0.2444
5.152 3.0 18 1.6834 0.2444
2.2029 4.0 24 1.5993 0.2667
1.6431 5.0 30 1.5694 0.2444
1.6431 6.0 36 1.6003 0.2444
1.5667 7.0 42 1.5690 0.2444
1.5667 8.0 48 1.5571 0.2444
1.5065 9.0 54 1.4670 0.2444
1.4556 10.0 60 1.4809 0.2444
1.4556 11.0 66 1.4913 0.2667
1.4366 12.0 72 1.4381 0.2444
1.4366 13.0 78 1.5011 0.2667
1.45 14.0 84 1.6192 0.2667
1.6105 15.0 90 1.3933 0.2667
1.6105 16.0 96 1.3754 0.3556
1.463 17.0 102 1.6119 0.2444
1.463 18.0 108 1.4972 0.2444
1.4133 19.0 114 1.2907 0.3111
1.3552 20.0 120 1.3783 0.2667
1.3552 21.0 126 1.2531 0.4
1.2635 22.0 132 1.2107 0.4222
1.2635 23.0 138 1.2781 0.3778
1.2442 24.0 144 1.1028 0.4222
1.1223 25.0 150 1.1738 0.4444
1.1223 26.0 156 1.1566 0.5111
1.0131 27.0 162 1.0937 0.5111
1.0131 28.0 168 1.0849 0.5556
0.9912 29.0 174 1.3429 0.5111
0.853 30.0 180 0.9919 0.6222
0.853 31.0 186 1.0799 0.5556
0.6912 32.0 192 1.1042 0.5333
0.6912 33.0 198 1.0782 0.5556
0.6669 34.0 204 0.9785 0.5333
0.5453 35.0 210 1.1312 0.6444
0.5453 36.0 216 1.0910 0.5556
0.5668 37.0 222 1.1103 0.6
0.5668 38.0 228 1.1358 0.5778
0.4266 39.0 234 1.0340 0.6222
0.471 40.0 240 1.0428 0.6222
0.471 41.0 246 1.0358 0.6444
0.4178 42.0 252 1.0357 0.6444
0.4178 43.0 258 1.0357 0.6444
0.3636 44.0 264 1.0357 0.6444
0.3974 45.0 270 1.0357 0.6444
0.3974 46.0 276 1.0357 0.6444
0.3949 47.0 282 1.0357 0.6444
0.3949 48.0 288 1.0357 0.6444
0.3754 49.0 294 1.0357 0.6444
0.3739 50.0 300 1.0357 0.6444

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0