hkivancoral's picture
End of training
4e957d5
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_beit_base_adamax_0001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8292682926829268

hushem_1x_beit_base_adamax_0001_fold5

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8158
  • Accuracy: 0.8293

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.1847 0.3902
1.4269 2.0 12 0.7266 0.7073
1.4269 3.0 18 0.6792 0.7073
0.5553 4.0 24 0.4456 0.7805
0.1357 5.0 30 0.2904 0.9024
0.1357 6.0 36 0.6815 0.8049
0.0115 7.0 42 0.6208 0.8049
0.0115 8.0 48 0.5124 0.8537
0.0146 9.0 54 0.7063 0.7805
0.0021 10.0 60 0.7320 0.8049
0.0021 11.0 66 0.5435 0.8537
0.0012 12.0 72 0.6105 0.8293
0.0012 13.0 78 0.6174 0.8537
0.0009 14.0 84 0.6224 0.8293
0.0011 15.0 90 0.5560 0.8293
0.0011 16.0 96 0.6136 0.8293
0.0005 17.0 102 0.6179 0.8537
0.0005 18.0 108 0.6489 0.8049
0.0019 19.0 114 0.7624 0.7561
0.0003 20.0 120 0.8499 0.7561
0.0003 21.0 126 0.8910 0.7805
0.0005 22.0 132 0.7310 0.7805
0.0005 23.0 138 0.6709 0.8049
0.0003 24.0 144 0.6558 0.8049
0.0004 25.0 150 0.6700 0.8049
0.0004 26.0 156 0.6879 0.8049
0.0003 27.0 162 0.7678 0.8049
0.0003 28.0 168 0.8154 0.8049
0.0002 29.0 174 0.8459 0.8049
0.0002 30.0 180 0.8632 0.8049
0.0002 31.0 186 0.8601 0.8049
0.001 32.0 192 0.8142 0.8049
0.001 33.0 198 0.7931 0.8049
0.0005 34.0 204 0.7822 0.8049
0.0004 35.0 210 0.7974 0.8293
0.0004 36.0 216 0.8092 0.8293
0.0001 37.0 222 0.8155 0.8293
0.0001 38.0 228 0.8178 0.8293
0.0001 39.0 234 0.8178 0.8293
0.0002 40.0 240 0.8165 0.8293
0.0002 41.0 246 0.8159 0.8293
0.0004 42.0 252 0.8158 0.8293
0.0004 43.0 258 0.8158 0.8293
0.0003 44.0 264 0.8158 0.8293
0.0001 45.0 270 0.8158 0.8293
0.0001 46.0 276 0.8158 0.8293
0.0011 47.0 282 0.8158 0.8293
0.0011 48.0 288 0.8158 0.8293
0.0001 49.0 294 0.8158 0.8293
0.0001 50.0 300 0.8158 0.8293

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0