File size: 1,629 Bytes
f50dc54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#!/usr/bin/env python3
"""Test script to debug VeRL training"""

import sys
import os
sys.path.insert(0, '/home/ubuntu/RLVR/TestTime-RLVR-v2')
sys.path.insert(0, '/home/ubuntu/RLVR/verl')

# Create dummy training data
import pandas as pd
import numpy as np

output_dir = "./test_time_output_debug"
training_data_path = os.path.join(output_dir, "training_data")
os.makedirs(training_data_path, exist_ok=True)

# Create minimal dummy data for each task type
for task_type in ['induction', 'deduction', 'abduction']:
    data = {
        'prompts': ['test prompt ' + task_type],
        'responses': ['test response ' + task_type], 
        'rewards': [1.0],
        'problem_id': ['test_id'],
        'token_level_scores': [np.array([1.0] * 10)]  # Dummy scores
    }
    df = pd.DataFrame(data)
    df.to_parquet(os.path.join(training_data_path, f'{task_type}.parquet'))

print(f"Created dummy training data in {training_data_path}")

# Now run Step 5 only
from test.train_ttrlvr_azr import main
import argparse

args = argparse.Namespace(
    benchmark='mbpp',
    problem_id='Mbpp/2',
    rounds=1,
    config='test/configs/ttrlvr_azr_ppo_4gpu.yaml',
    step5_only=True,
    data_path=training_data_path,
    output_dir=output_dir,
    model='Qwen/Qwen2.5-7B',
    debug=True,
    batch_size=24,
    batch_epochs=1,
    num_programs=4,
    input_generation_rounds=3,
    parallel_batch_size=4,
    eval_rounds=5,
    skip_task_eval=False,
    save_every_round=False,
    save_round_interval=5,
    problems=10,
    resume=1,
    gpu=None
)

# Patch sys.argv for argparse
sys.argv = ['test_debug_verl.py']

# Run main
main(args)