File size: 26,279 Bytes
f50dc54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
#!/usr/bin/env python3
"""
TTRLVR + AZR ํ†ตํ•ฉ ํ•™์Šต ๋ฉ”์ธ ์Šคํฌ๋ฆฝํŠธ (Unified Version)

UnifiedTTRLVRTrainer๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ•˜๋‚˜์˜ VeRL ์„ธ์…˜์—์„œ ์ „์ฒด ํ•™์Šต ์ง„ํ–‰:
1. VeRL worker ํ•œ ๋ฒˆ๋งŒ ์ดˆ๊ธฐํ™”
2. ๊ฐ ๋ผ์šด๋“œ๋งˆ๋‹ค ๊ฐ™์€ vLLM์œผ๋กœ Phase 1-4 ์‹คํ–‰
3. ๊ฐ™์€ vLLM์œผ๋กœ Phase 5 PPO ํ•™์Šต
4. ๋™๊ธฐํ™” ๋ฌธ์ œ ์™„์ „ ํ•ด๊ฒฐ (dummy_dtensor ์‚ฌ์šฉ ๊ฐ€๋Šฅ)

์‚ฌ์šฉ ์˜ˆ์‹œ:
    # ์ผ๋ฐ˜ ํ•™์Šต
    python train_ttrlvr_azr_unified.py --benchmark mbpp --problems 10 --rounds 30
    python train_ttrlvr_azr_unified.py --benchmark humaneval --problems 5 --rounds 10
    python train_ttrlvr_azr_unified.py --benchmark mbpp --problem-id Mbpp/2 --rounds 5
    
    # GPU ์ง€์ •
    python train_ttrlvr_azr_unified.py --benchmark mbpp --problems 10 --rounds 30 --gpu 0,1,2,3
"""

import os
import sys
import argparse
import json
from datetime import datetime
from pathlib import Path
from typing import List
import warnings
import ray
import torch

# Gradient checkpointing ๊ด€๋ จ ๊ฒฝ๊ณ  ํ•„ํ„ฐ๋ง
warnings.filterwarnings("ignore", message=".*Caching is incompatible with gradient checkpointing.*")

# ๊ฒฝ๋กœ ์„ค์ • - ์ƒ๋Œ€ ๊ฒฝ๋กœ ์‚ฌ์šฉ
project_root = Path(__file__).parent.parent  # TestTime-RLVR-v2 ๋””๋ ‰ํ† ๋ฆฌ
sys.path.append(str(project_root))

# verl๊ณผ Absolute-Zero-Reasoner๋Š” ์ƒ์œ„ ๋””๋ ‰ํ† ๋ฆฌ์—์„œ ์ฐพ๊ธฐ
parent_dir = project_root.parent
for lib_name in ['verl', 'Absolute-Zero-Reasoner']:
    lib_path = parent_dir / lib_name
    if lib_path.exists():
        sys.path.append(str(lib_path))
    # pip๋กœ ์„ค์น˜๋œ ๊ฒฝ์šฐ๋Š” ์ž๋™์œผ๋กœ import ๋จ

# AZR/VeRL ๋ชจ๋“ˆ ์ž„ํฌํŠธ (main_azr_ppo.py์™€ ๋™์ผํ•œ ๊ตฌ์กฐ)
from verl import DataProto
from omegaconf import OmegaConf
import ray
from verl.utils import hf_tokenizer
from verl.trainer.ppo.ray_trainer import ResourcePoolManager, Role
from verl.single_controller.ray import RayWorkerGroup
from verl.workers.fsdp_workers import ActorRolloutRefWorker, AsyncActorRolloutRefWorker, CriticWorker
from absolute_zero_reasoner.utils.logging_utils.stdout import PrettyPrinter

# TTRLVR ๋ชจ๋“ˆ ์ž„ํฌํŠธ  
from absolute_zero_reasoner.testtime.config import TestTimeConfig, BenchmarkConfig
from absolute_zero_reasoner.testtime.logger import TestTimeLogger


# Ray ์ •๋ฆฌ ๋ณ€์ˆ˜
_trainer_instance = None
_logger_instance = None


def cleanup_ray():
    """Ray ํด๋Ÿฌ์Šคํ„ฐ ์ •๋ฆฌ ํ•จ์ˆ˜"""
    global _trainer_instance, _logger_instance
    
    try:
        if _logger_instance:
            _logger_instance.log_info("๐Ÿ”„ ๊ฐ•์ œ ์ข…๋ฃŒ ๊ฐ์ง€: Ray ํด๋Ÿฌ์Šคํ„ฐ ์ •๋ฆฌ ์ค‘...")
    except:
        print("๐Ÿ”„ ๊ฐ•์ œ ์ข…๋ฃŒ ๊ฐ์ง€: Ray ํด๋Ÿฌ์Šคํ„ฐ ์ •๋ฆฌ ์ค‘...")
    
    try:
        # IterativeTrainer ์ •๋ฆฌ
        if _trainer_instance:
            _trainer_instance.cleanup_ray()
    except Exception as e:
        try:
            if _logger_instance:
                _logger_instance.log_error(f"IterativeTrainer ์ •๋ฆฌ ์‹คํŒจ: {e}")
        except:
            print(f"IterativeTrainer ์ •๋ฆฌ ์‹คํŒจ: {e}")
    
    try:
        # ํ˜„์žฌ ํ”„๋กœ๊ทธ๋žจ์˜ Ray๋งŒ ์ข…๋ฃŒ (์•ˆ์ „ํ•œ ๋ฐฉ๋ฒ•)
        import ray
        if ray.is_initialized():
            ray.shutdown()
    except Exception as e:
        try:
            if _logger_instance:
                _logger_instance.log_error(f"Ray ์ข…๋ฃŒ ์‹คํŒจ: {e}")
        except:
            print(f"Ray ์ข…๋ฃŒ ์‹คํŒจ: {e}")
    
    try:
        if _logger_instance:
            _logger_instance.log_info("โœ… Ray ์ •๋ฆฌ ์™„๋ฃŒ")
    except:
        print("โœ… Ray ์ •๋ฆฌ ์™„๋ฃŒ")


def signal_handler(signum, frame):
    """์‹œ๊ทธ๋„ ํ•ธ๋“ค๋Ÿฌ (Ctrl+C, ๊ฐ•์ œ ์ข…๋ฃŒ ๋“ฑ)"""
    try:
        if _logger_instance:
            _logger_instance.log_info(f"๐Ÿ›‘ ์‹œ๊ทธ๋„ {signum} ์ˆ˜์‹ : ํ”„๋กœ๊ทธ๋žจ ์ข…๋ฃŒ ์ค‘...")
    except:
        print(f"๐Ÿ›‘ ์‹œ๊ทธ๋„ {signum} ์ˆ˜์‹ : ํ”„๋กœ๊ทธ๋žจ ์ข…๋ฃŒ ์ค‘...")
    
    cleanup_ray()
    sys.exit(1)


def parse_arguments():
    """๋ช…๋ นํ–‰ ์ธ์ž ํŒŒ์‹ฑ"""
    
    parser = argparse.ArgumentParser(
        description='TTRLVR + AZR ํ†ตํ•ฉ ๋ฐ˜๋ณต ํ•™์Šต',
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog="""
์˜ˆ์‹œ:
  # MBPP 10๋ฌธ์ œ๋กœ 30๋ผ์šด๋“œ ํ•™์Šต
  python train_ttrlvr_azr.py --benchmark mbpp --problems 10 --rounds 30
  
  # HumanEval 5๋ฌธ์ œ๋กœ 10๋ผ์šด๋“œ ํ•™์Šต
  python train_ttrlvr_azr.py --benchmark humaneval --problems 5 --rounds 10
  
  # 15๋ผ์šด๋“œ๋ถ€ํ„ฐ ์žฌ๊ฐœ
  python train_ttrlvr_azr.py --benchmark mbpp --problems 10 --rounds 30 --resume 15
  
  # ํŠน์ • GPU ์‚ฌ์šฉ
  python train_ttrlvr_azr.py --benchmark mbpp --problems 10 --rounds 30 --gpu 4
        """
    )
    
    parser.add_argument(
        '--benchmark', 
        choices=['mbpp', 'humaneval'], 
        default='mbpp',
        help='๋ฒค์น˜๋งˆํฌ ์„ ํƒ (๊ธฐ๋ณธ๊ฐ’: mbpp)'
    )
    
    parser.add_argument(
        '--problems', 
        type=int, 
        default=10,
        help='๋ฌธ์ œ ์ˆ˜ (๊ธฐ๋ณธ๊ฐ’: 10)'
    )
    
    parser.add_argument(
        '--problem-id', 
        type=str, 
        help='ํŠน์ • ๋ฌธ์ œ ID (์˜ˆ: HumanEval/1, Mbpp/10)'
    )
    
    parser.add_argument(
        '--rounds', 
        type=int, 
        default=30,
        help='์ด ๋ผ์šด๋“œ ์ˆ˜ (๊ธฐ๋ณธ๊ฐ’: 30)'
    )
    
    parser.add_argument(
        '--resume', 
        type=int, 
        default=1,
        help='์žฌ๊ฐœํ•  ๋ผ์šด๋“œ ๋ฒˆํ˜ธ (๊ธฐ๋ณธ๊ฐ’: 1)'
    )
    
    parser.add_argument(
        '--gpu', 
        type=str, 
        default='5',
        help='์‚ฌ์šฉํ•  GPU ๋ฒˆํ˜ธ (๋‹จ์ผ: 5, ๋‹ค์ค‘: 1,2,3,5)'
    )
    
    parser.add_argument(
        '--output-dir', 
        type=str, 
        default='./results/ttrlvr_azr',
        help='๊ฒฐ๊ณผ ์ €์žฅ ๋””๋ ‰ํ† ๋ฆฌ (๊ธฐ๋ณธ๊ฐ’: ./results/ttrlvr_azr)'
    )
    
    parser.add_argument(
        '--config', 
        type=str, 
        help='์„ค์ • ํŒŒ์ผ ๊ฒฝ๋กœ (์„ ํƒ์‚ฌํ•ญ)'
    )
    
    parser.add_argument(
        '--model',
        type=str,
        default='Qwen/Qwen2.5-7B',
        help='์‚ฌ์šฉํ•  ๋ชจ๋ธ (๊ธฐ๋ณธ๊ฐ’: Qwen/Qwen2.5-7B)'
    )
    
    parser.add_argument(
        '--debug', 
        action='store_true',
        help='๋””๋ฒ„๊ทธ ๋ชจ๋“œ ํ™œ์„ฑํ™”'
    )
    
    parser.add_argument(
        '--batch-size',
        type=int,
        default=24,
        help='ํ•™์Šต ๋ฐฐ์น˜ ํฌ๊ธฐ (๊ธฐ๋ณธ๊ฐ’: 24, OOM ์‹œ ์ค„์ด๊ธฐ)'
    )
    
    parser.add_argument(
        '--batch-epochs',
        type=int,
        default=1,
        help='๋ฐฐ์น˜๋‹น ์—ํญ ์ˆ˜ (๊ธฐ๋ณธ๊ฐ’: 1, ๋” ๋งŽ์€ ํ•™์Šต์„ ์œ„ํ•ด ์ฆ๊ฐ€ ๊ฐ€๋Šฅ)'
    )
    
    parser.add_argument(
        '--num-programs',
        type=int,
        default=4,
        help='์ƒ์„ฑํ•  ๋‹ค์–‘ํ•œ ํ”„๋กœ๊ทธ๋žจ ์ˆ˜ (๊ธฐ๋ณธ๊ฐ’: 4, ๋” ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ์œ„ํ•ด ์ฆ๊ฐ€ ๊ฐ€๋Šฅ)'
    )
    
    parser.add_argument(
        '--input-generation-rounds',
        type=int,
        default=3,
        help='๋‹ค์–‘ํ•œ ์ž…๋ ฅ ์ƒ์„ฑ ๋ผ์šด๋“œ ์ˆ˜ (๊ธฐ๋ณธ๊ฐ’: 3, ๋ผ์šด๋“œ๋‹น 5๊ฐœ์”ฉ ์ƒ์„ฑ)'
    )
    
    parser.add_argument(
        '--parallel-batch-size',
        type=int,
        default=4,
        help='๋™์‹œ ์ฒ˜๋ฆฌํ•  ํ”„๋กฌํ”„ํŠธ ์ˆ˜ (๊ธฐ๋ณธ๊ฐ’: 4, GPU ๋ฉ”๋ชจ๋ฆฌ์— ๋”ฐ๋ผ ์กฐ์ •)'
    )
    
    parser.add_argument(
        '--eval-rounds',
        type=int,
        default=5,
        help='๋งค ๋ผ์šด๋“œ ์ •ํ™•๋„ ์ธก์ • ํšŸ์ˆ˜ (๊ธฐ๋ณธ๊ฐ’: 5, ๋” ์ •ํ™•ํ•œ ํ‰๊ฐ€๋ฅผ ์œ„ํ•ด ์ฆ๊ฐ€ ๊ฐ€๋Šฅ)'
    )
    
    parser.add_argument(
        '--skip-task-eval',
        action='store_true',
        help='Task evaluation(4๋‹จ๊ณ„) ์Šคํ‚ตํ•˜์—ฌ ๋น ๋ฅธ ํ…Œ์ŠคํŠธ (๋ฐ์ดํ„ฐ ์ƒ์„ฑ ํ›„ ๋ฐ”๋กœ VeRL ํ•™์Šต)'
    )
    
    parser.add_argument(
        '--save-every-round',
        action='store_true',
        help='๋งค ๋ผ์šด๋“œ๋งˆ๋‹ค ์ฒดํฌํฌ์ธํŠธ ์ €์žฅ (๊ธฐ๋ณธ๊ฐ’: False)'
    )
    
    parser.add_argument(
        '--save-round-interval',
        type=int,
        default=5,
        help='์ฒดํฌํฌ์ธํŠธ ์ €์žฅ ๊ฐ„๊ฒฉ (์˜ˆ: 5 = 5๋ผ์šด๋“œ๋งˆ๋‹ค ์ €์žฅ, ๊ธฐ๋ณธ๊ฐ’: 5)'
    )
    
    
    return parser.parse_args()


def setup_environment(gpu_id: str, batch_size: int = None):
    """ํ™˜๊ฒฝ ๋ณ€์ˆ˜ ์„ค์ • - run_ttrlvr_azr_training.sh์™€ ๋™์ผํ•˜๊ฒŒ"""
    
    # GPU ์„ค์ • - ๋ช…๋ นํ–‰ ์ธ์ž๋ฅผ ์šฐ์„  ์‚ฌ์šฉํ•˜๊ณ , ์—†์œผ๋ฉด ๊ธฐ์กด ํ™˜๊ฒฝ๋ณ€์ˆ˜ ์‚ฌ์šฉ
    if gpu_id:
        os.environ['CUDA_VISIBLE_DEVICES'] = gpu_id
        print(f"๐ŸŽฏ Using command line GPU setting: {gpu_id}")
    elif 'CUDA_VISIBLE_DEVICES' in os.environ and os.environ['CUDA_VISIBLE_DEVICES']:
        print(f"๐ŸŽฏ Using existing CUDA_VISIBLE_DEVICES: {os.environ['CUDA_VISIBLE_DEVICES']}")
    else:
        os.environ['CUDA_VISIBLE_DEVICES'] = '5'  # ๊ธฐ๋ณธ๊ฐ’
        print(f"๐ŸŽฏ Using default GPU: 5")
    
    # VLLM ์„ค์ • (run_ttrlvr_azr_training.sh์™€ ๋™์ผ)
    os.environ['VLLM_ATTENTION_BACKEND'] = 'FLASH_ATTN'
    
    # Ray ์„ค์ • (run_ttrlvr_azr_training.sh์™€ ๋™์ผ)
    os.environ['RAY_memory_monitor_refresh_ms'] = '0'
    os.environ['RAY_LOGGING_LEVEL'] = 'DEBUG'
    
    # Hydra ์„ค์ •
    os.environ['HYDRA_FULL_ERROR'] = '1'
    
    # Python ๊ฒฝ๋กœ ์„ค์ • (verl ๊ฒฝ๋กœ ์ถ”๊ฐ€) - ์ƒ๋Œ€ ๊ฒฝ๋กœ ์‚ฌ์šฉ
    pythonpath = os.environ.get('PYTHONPATH', '')
    project_root = Path(__file__).parent.parent  # TestTime-RLVR-v2 directory  
    
    # ํ”„๋กœ์ ํŠธ ๊ฒฝ๋กœ๋“ค ์„ค์ •
    paths_to_add = [str(project_root)]
    parent_dir = project_root.parent
    
    # verl๊ณผ Absolute-Zero-Reasoner ๊ฒฝ๋กœ ์ถ”๊ฐ€ (์กด์žฌํ•˜๋Š” ๊ฒฝ์šฐ)
    if (parent_dir / 'verl').exists():
        paths_to_add.append(str(parent_dir / 'verl'))
    if (parent_dir / 'Absolute-Zero-Reasoner').exists():
        paths_to_add.append(str(parent_dir / 'Absolute-Zero-Reasoner'))
    
    # PYTHONPATH ์—…๋ฐ์ดํŠธ
    for path in paths_to_add:
        if path not in pythonpath:
            pythonpath = f"{path}:{pythonpath}" if pythonpath else path
    
    os.environ['PYTHONPATH'] = pythonpath
    
    # batch size ์„ค์ •
    if batch_size is not None:
        os.environ['TRAIN_BATCH_SIZE'] = str(batch_size)
    
    # ์ถ”๊ฐ€ ํ™˜๊ฒฝ ๋ณ€์ˆ˜ ์„ค์ • (์œ„์—์„œ ์„ค์ •ํ•˜์ง€ ์•Š์€ ๊ฒƒ๋“ค๋งŒ)
    # ๊ธฐ๋ณธ๊ฐ’์œผ๋กœ ํ™ˆ ๋””๋ ‰ํ† ๋ฆฌ ์‚ฌ์šฉ, ํ™˜๊ฒฝ๋ณ€์ˆ˜๋กœ ์˜ค๋ฒ„๋ผ์ด๋“œ ๊ฐ€๋Šฅ
    os.environ.setdefault('HF_HOME', os.path.expanduser('~/.cache/huggingface'))
    os.environ.setdefault('TRANSFORMERS_CACHE', os.path.expanduser('~/.cache/huggingface'))
    os.environ['TOKENIZERS_PARALLELISM'] = 'false'
    
    # PYTHONPATH ์„ค์ • - ์ƒ๋Œ€ ๊ฒฝ๋กœ ์‚ฌ์šฉ
    current_pythonpath = os.environ.get('PYTHONPATH', '')
    project_root = Path(__file__).parent.parent  # TestTime-RLVR-v2 directory
    new_paths = [
        str(project_root)
        # site-packages๋Š” ์ž๋™์œผ๋กœ ํฌํ•จ๋˜๋ฏ€๋กœ ์ œ๊ฑฐ
    ]
    
    for path in new_paths:
        if path not in current_pythonpath:
            current_pythonpath = f"{path}:{current_pythonpath}" if current_pythonpath else path
    
    os.environ['PYTHONPATH'] = current_pythonpath


def load_benchmark_problems(benchmark_config: BenchmarkConfig) -> List[str]:
    """๋ฒค์น˜๋งˆํฌ์—์„œ ๋ฌธ์ œ ID ๋ชฉ๋ก ๋กœ๋“œ (๊ธฐ์กด TTRLVR ๋ฐฉ์‹ ์‚ฌ์šฉ)"""
    
    problems = []
    
    if benchmark_config.name == 'mbpp':
        # MBPP+ EvalPlus ํ‘œ์ค€ ๋ฐ์ดํ„ฐ ๋กœ๋”ฉ
        try:
            from evalplus.data.mbpp import get_mbpp_plus
            mbpp_problems = get_mbpp_plus()  # ์ž๋™์œผ๋กœ mbpp_deserialize_inputs ์ ์šฉ๋จ
            problems = list(mbpp_problems.keys())
            print(f"โœ… MBPP+ ๋ฐ์ดํ„ฐ ๋กœ๋“œ ์„ฑ๊ณต: {len(problems)}๊ฐœ ๋ฌธ์ œ (EvalPlus ํ‘œ์ค€ ๋ฐฉ์‹)")
        except Exception as e:
            print(f"โŒ MBPP+ EvalPlus ๋กœ๋”ฉ ์‹คํŒจ, ๊ธฐ์กด ๋ฐฉ์‹ ์‚ฌ์šฉ: {e}")
            # Fallback to original method
            data_path = benchmark_config.data_path
            if os.path.exists(data_path):
                with open(data_path, 'r') as f:
                    for line in f:
                        problem = json.loads(line.strip())
                        problems.append(problem['task_id'])
    
    elif benchmark_config.name == 'humaneval':
        # HumanEval+ EvalPlus ํ‘œ์ค€ ๋ฐ์ดํ„ฐ ๋กœ๋”ฉ
        try:
            from evalplus.data.humaneval import get_human_eval_plus
            humaneval_problems = get_human_eval_plus()
            problems = list(humaneval_problems.keys())
            print(f"โœ… HumanEval+ ๋ฐ์ดํ„ฐ ๋กœ๋“œ ์„ฑ๊ณต: {len(problems)}๊ฐœ ๋ฌธ์ œ (EvalPlus ํ‘œ์ค€ ๋ฐฉ์‹)")
        except Exception as e:
            print(f"โŒ HumanEval+ EvalPlus ๋กœ๋”ฉ ์‹คํŒจ, ๊ธฐ์กด ๋ฐฉ์‹ ์‚ฌ์šฉ: {e}")
            # Fallback to original method
            data_path = benchmark_config.data_path
            if os.path.exists(data_path):
                with open(data_path, 'r') as f:
                    for line in f:
                        problem = json.loads(line.strip())
                        problems.append(problem['task_id'])
    
    return problems


def create_problem_list(benchmark: str, num_problems: int, specific_problem_id: str = None) -> list:
    """๋ฒค์น˜๋งˆํฌ๋ณ„ ๋ฌธ์ œ ID ๋ฆฌ์ŠคํŠธ ์ƒ์„ฑ (๊ธฐ์กด TTRLVR ๋ฐฉ์‹ ์‚ฌ์šฉ)"""
    
    # BenchmarkConfig ์ƒ์„ฑ
    benchmark_config = create_benchmark_config(benchmark)
    
    # ์ „์ฒด ๋ฌธ์ œ ๋ชฉ๋ก ๋กœ๋“œ
    all_problems = load_benchmark_problems(benchmark_config)
    
    if not all_problems:
        raise ValueError(f"No problems found for benchmark: {benchmark}")
    
    # ํŠน์ • ๋ฌธ์ œ ID๊ฐ€ ์ง€์ •๋œ ๊ฒฝ์šฐ
    if specific_problem_id:
        if specific_problem_id in all_problems:
            return [specific_problem_id]
        else:
            raise ValueError(f"Problem ID '{specific_problem_id}' not found in {benchmark} benchmark")
    
    # ์š”์ฒญ๋œ ์ˆ˜๋งŒํผ ๋ฌธ์ œ ์„ ํƒ
    if num_problems <= 0 or num_problems > len(all_problems):
        return all_problems
    else:
        return all_problems[:num_problems]


def create_config(args) -> TestTimeConfig:
    """TestTimeConfig ์ƒ์„ฑ"""
    
    config = TestTimeConfig()
    
    # ๊ธฐ๋ณธ ์„ค์ •
    config.model_name = args.model  # ์ธ์ž๋กœ ๋ฐ›์€ ๋ชจ๋ธ ์‚ฌ์šฉ
    config.max_new_tokens = 512
    config.temperature = 0.05
    config.baseline_evaluation_rounds = args.eval_rounds  # ํ‰๊ฐ€ ํšŸ์ˆ˜
    
    # ํ”„๋กœ๊ทธ๋žจ ์ƒ์„ฑ ์„ค์ •
    config.num_program_variations = args.num_programs  # ๋‹ค์–‘ํ•œ ํ”„๋กœ๊ทธ๋žจ ๊ฐœ์ˆ˜
    config.input_generation_rounds = args.input_generation_rounds  # ์ž…๋ ฅ ์ƒ์„ฑ ๋ผ์šด๋“œ ์ˆ˜
    config.parallel_batch_size = args.parallel_batch_size  # ๋™์‹œ ์ฒ˜๋ฆฌ ํ”„๋กฌํ”„ํŠธ ์ˆ˜
    
    # Task evaluation ์Šคํ‚ต ์„ค์ •
    config.skip_task_evaluation = args.skip_task_eval  # Task evaluation ์Šคํ‚ต ์—ฌ๋ถ€
    
    # ๋””๋ฒ„๊ทธ ๋ชจ๋“œ
    if args.debug:
        config.debug = True
        config.verbose = True
    
    return config


def create_benchmark_config(benchmark: str) -> BenchmarkConfig:
    """BenchmarkConfig ์ƒ์„ฑ (๊ธฐ์กด TTRLVR ๋ฐฉ์‹ ์‚ฌ์šฉ)"""
    
    # ๊ธฐ์กด TTRLVR ์‹œ์Šคํ…œ๊ณผ ๋™์ผํ•œ ๋ฐฉ์‹์œผ๋กœ BenchmarkConfig ์ƒ์„ฑ
    # TestTime-RLVR-v2 ๋””๋ ‰ํ† ๋ฆฌ๋ฅผ base๋กœ ์‚ฌ์šฉ
    base_dir = Path(__file__).parent.parent  # TestTime-RLVR-v2 directory
    
    if benchmark == 'mbpp':
        benchmark_config = BenchmarkConfig.get_mbpp_config()
        benchmark_config.data_path = str(base_dir / 'evaluation/code_eval/data/MbppPlus.jsonl')
        return benchmark_config
    elif benchmark == 'humaneval':
        benchmark_config = BenchmarkConfig.get_humaneval_config()
        benchmark_config.data_path = str(base_dir / 'evaluation/code_eval/data/HumanEvalPlus.jsonl')
        return benchmark_config
    else:
        raise ValueError(f"Unknown benchmark: {benchmark}")




def run_step5_only_mode(args):
    """Step 5 ์ „์šฉ ๋ชจ๋“œ ์‹คํ–‰"""
    from pathlib import Path
    
    print(f"๐ŸŽ“ Running Step 5 (VeRL training) only mode")
    print(f"๐Ÿ“‚ Data path: {args.data_path}")
    
    # ๋ฐ์ดํ„ฐ ๊ฒฝ๋กœ ๊ฒ€์ฆ
    data_path = Path(args.data_path)
    if not data_path.exists():
        print(f"โŒ Error: Data path does not exist: {data_path}")
        return 1
    
    # ํ•„์ˆ˜ ํŒŒ์ผ๋“ค ํ™•์ธ
    required_files = ['induction.parquet', 'deduction.parquet', 'abduction.parquet']
    missing_files = []
    for file_name in required_files:
        if not (data_path / file_name).exists():
            missing_files.append(file_name)
    
    if missing_files:
        print(f"โŒ Error: Missing required files: {missing_files}")
        return 1
    
    print(f"โœ… Found all required training data files in: {data_path}")
    
    # ํŒŒ์ผ ํฌ๊ธฐ ์ •๋ณด ์ถœ๋ ฅ
    for file_name in required_files:
        file_path = data_path / file_name
        file_size = file_path.stat().st_size
        print(f"  ๐Ÿ“„ {file_name}: {file_size:,} bytes")
    
    # ํ™˜๊ฒฝ ์„ค์ •
    setup_environment(args.gpu, args.batch_size)
    
    # ์„ค์ • ํŒŒ์ผ ๊ฒฝ๋กœ ๊ฒฐ์ •
    config_path = args.config
    if not config_path:
        # GPU ๊ฐœ์ˆ˜์— ๋”ฐ๋ผ ๊ธฐ๋ณธ ์„ค์ • ํŒŒ์ผ ์„ ํƒ
        gpu_count = len(args.gpu.split(',')) if args.gpu else 1
        if gpu_count >= 4:
            config_path = str(Path(__file__).parent / 'configs/ttrlvr_azr_ppo_4gpu.yaml')
        else:
            config_path = str(Path(__file__).parent / 'configs/ttrlvr_azr_ppo_1gpu.yaml')
    
    print(f"๐Ÿš€ Initializing trainer with config: {config_path}")
    
    # TestTimeConfig ์ƒ์„ฑ (๊ธฐ์กด create_config ํ•จ์ˆ˜ ์‚ฌ์šฉ)
    config = create_config(args)
    
    # ๋กœ๊ฑฐ ์ดˆ๊ธฐํ™”
    logger = TestTimeLogger()
    
    # IterativeTrainer ์ดˆ๊ธฐํ™”
    global _trainer_instance
    _trainer_instance = IterativeTrainer(
        config=config,
        logger=logger,
        verl_config_path=config_path
    )
    
    # Step 5 ์ „์šฉ VeRL ํ•™์Šต ์‹คํ–‰
    try:
        result = _trainer_instance.run_verl_training_only(
            training_data_path=str(data_path),
            round_num=args.resume,  # resume์„ round number๋กœ ์‚ฌ์šฉ
            experiment_name=f"step5_only_{args.benchmark}"
        )
        
        if result.get('success', False):
            print(f"โœ… VeRL training completed successfully!")
            print(f"โฑ๏ธ  Duration: {result.get('duration', 'N/A')} seconds")
            if 'model_path' in result:
                print(f"๐Ÿค– Updated model: {result['model_path']}")
            return 0
        else:
            print(f"โŒ VeRL training failed: {result.get('error', 'Unknown error')}")
            return 1
            
    except Exception as e:
        print(f"๐Ÿ’ฅ Training failed with exception: {e}")
        import traceback
        traceback.print_exc()
        return 1


def main():
    """๋ฉ”์ธ ์‹คํ–‰ ํ•จ์ˆ˜ - UnifiedTTRLVRTrainer ์‚ฌ์šฉ"""
    
    # ์ธ์ž ํŒŒ์‹ฑ
    args = parse_arguments()
    
    # ํ™˜๊ฒฝ ์„ค์ •
    setup_environment(args.gpu)
    
    # ์ถœ๋ ฅ ๋””๋ ‰ํ† ๋ฆฌ ์ƒ์„ฑ
    timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
    output_dir = os.path.join(
        args.output_dir, 
        f'ttrlvr_unified_{args.benchmark}_{args.rounds}rounds_{timestamp}'
    )
    os.makedirs(output_dir, exist_ok=True)
    
    PrettyPrinter.section_header("๐Ÿš€ TTRLVR Unified Training")
    PrettyPrinter.status("Config", f"Benchmark: {args.benchmark}", "info")
    PrettyPrinter.status("Config", f"Rounds: {args.rounds}", "info")
    PrettyPrinter.status("Config", f"Output: {output_dir}", "info")
    
    
    # ๋ฌธ์ œ ๋ฆฌ์ŠคํŠธ ์ƒ์„ฑ
    problem_ids = create_problem_list(args.benchmark, args.problems, args.problem_id)
    PrettyPrinter.status("Problems", f"Selected {len(problem_ids)} problems", "info")
    
    # TTRLVR ์„ค์ •
    ttrlvr_config = {
        'num_programs': args.num_programs,
        'input_generation_rounds': args.input_generation_rounds,
        'parallel_batch_size': args.parallel_batch_size,
    }
    
    # VeRL config ํŒŒ์ผ ๊ฒฝ๋กœ
    if args.config:
        config_path = os.path.abspath(args.config)
    else:
        # ํ˜„์žฌ๋Š” 4GPU config๋งŒ ์‚ฌ์šฉ (์ถ”ํ›„ 1GPU config ์ถ”๊ฐ€ ์‹œ ์ˆ˜์ •)
        config_path = str(Path(__file__).parent / 'configs/ttrlvr_azr_unified_4gpu.yaml')
    
    PrettyPrinter.status("Config", f"Using VeRL config: {config_path}", "info")
    
    try:
        # ============================================
        # VeRL์„ ํ†ตํ•ด UnifiedTTRLVRTrainer ์‹คํ–‰
        # ============================================
        
        # VeRL ์‹คํ–‰์„ ์œ„ํ•œ ํ™˜๊ฒฝ ๋ณ€์ˆ˜ ์„ค์ •
        os.environ['TTRLVR_PROBLEM_IDS'] = json.dumps(problem_ids)
        os.environ['TTRLVR_TOTAL_ROUNDS'] = str(args.rounds)
        os.environ['TTRLVR_OUTPUT_DIR'] = output_dir
        os.environ['TTRLVR_CONFIG'] = json.dumps(ttrlvr_config)
        
        # ============================================
        # AZR ํ˜•์‹์œผ๋กœ ์ดˆ๊ธฐํ™”, TTRLVR ๋ฐฉ์‹์œผ๋กœ ์‹คํ–‰
        # (main_azr_ppo.py์˜ ๊ตฌ์กฐ๋ฅผ ๋”ฐ๋ฅด๋˜ UnifiedTTRLVRTrainer ์‚ฌ์šฉ)
        # ============================================
        
        PrettyPrinter.section_header("๐ŸŽฏ Starting UnifiedTTRLVRTrainer (AZR-style initialization)")
        
        # 1. Config ๋กœ๋“œ (main_azr_ppo.py์™€ ๋™์ผ)
        PrettyPrinter.status("Config", f"Loading {config_path}", "info")
        verl_config = OmegaConf.load(config_path)
        
        # Config ์—…๋ฐ์ดํŠธ
        verl_config.trainer.project_name = f'ttrlvr_unified_{args.benchmark}'
        verl_config.trainer.experiment_name = f'round_{args.rounds}_{timestamp}'
        verl_config.trainer.total_epochs = args.rounds
        
        # 2. Ray ์ดˆ๊ธฐํ™” (main_azr_ppo.py์™€ ๋™์ผ)
        if not ray.is_initialized():
            cuda_visible_devices = args.gpu or "0,1,2,3"
            PrettyPrinter.status("Ray", f"Initializing Ray cluster (GPUs: {cuda_visible_devices})", "info")
            ray.init(
                runtime_env={"env_vars": {
                    "TOKENIZERS_PARALLELISM": "true",
                    "NCCL_DEBUG": "WARN",
                    "VLLM_LOGGING_LEVEL": "WARN",
                    "VLLM_ALLOW_RUNTIME_LORA_UPDATING": "true",
                    "CUDA_VISIBLE_DEVICES": cuda_visible_devices
                }},
                num_cpus=verl_config.ray_init.num_cpus,
                # num_gpus ์ง€์ •ํ•˜์ง€ ์•Š์Œ - Ray๊ฐ€ ์ž๋™์œผ๋กœ GPU ๊ฐ์ง€ (AZR ์›๋ณธ๊ณผ ๋™์ผ)
            )
        
        # 3. Tokenizer ๋กœ๋“œ (main_azr_ppo.py์™€ ๋™์ผ)
        model_path = verl_config.actor_rollout_ref.model.path
        PrettyPrinter.status("Model", f"Loading tokenizer from {model_path}", "info")
        tokenizer = hf_tokenizer(model_path)
        
        # 4. Worker ๋งคํ•‘ ์„ค์ • (main_azr_ppo.py์™€ ๋™์ผ)
        role_worker_mapping = {}
        
        # Actor/Rollout Worker ์„ ํƒ
        if verl_config.actor_rollout_ref.rollout.name == 'vllm':
            if verl_config.actor_rollout_ref.rollout.mode == 'async':
                actor_rollout_cls = AsyncActorRolloutRefWorker
            else:
                actor_rollout_cls = ActorRolloutRefWorker
            # AZR ์›๋ณธ๊ณผ ๋™์ผํ•˜๊ฒŒ ray.remote() ์‚ฌ์šฉ
            role_worker_mapping[Role.ActorRollout] = ray.remote(actor_rollout_cls)
            PrettyPrinter.status("Workers", f"Using {actor_rollout_cls.__name__} for ActorRollout", "info")
        
        # Critic Worker (REINFORCE++๋Š” ์‚ฌ์šฉ ์•ˆํ•จ)
        if verl_config.critic.include_critic:
            # AZR ์›๋ณธ๊ณผ ๋™์ผํ•˜๊ฒŒ ray.remote() ์‚ฌ์šฉ
            role_worker_mapping[Role.Critic] = ray.remote(CriticWorker)
            PrettyPrinter.status("Workers", "Including Critic worker", "info")
        else:
            PrettyPrinter.status("Workers", "No Critic (using REINFORCE++)", "info")
        
        # 5. ResourcePoolManager ์ƒ์„ฑ (main_azr_ppo.py์™€ ๋™์ผ)
        # AZR ์Šคํƒ€์ผ๋กœ resource_pool_spec ์ง์ ‘ ์ƒ์„ฑ
        global_pool_id = "global_pool"
        n_gpus_per_node = verl_config.trainer.n_gpus_per_node
        nnodes = verl_config.trainer.nnodes
        resource_pool_spec = {
            global_pool_id: [n_gpus_per_node] * nnodes,
        }
        mapping = {
            Role.ActorRollout: global_pool_id,
        }
        if verl_config.critic.include_critic:
            mapping[Role.Critic] = global_pool_id
        
        resource_pool_manager = ResourcePoolManager(resource_pool_spec=resource_pool_spec, mapping=mapping)
        PrettyPrinter.status("Resources", f"Created ResourcePoolManager with {len(resource_pool_spec)} pools", "info")
        
        # 6. UnifiedTTRLVRTrainer ์ƒ์„ฑ (CodeIORayPPOTrainer ๋Œ€์‹ )
        from trainer.unified_ttrlvr_trainer import UnifiedTTRLVRTrainer
        
        PrettyPrinter.status("Trainer", "Creating UnifiedTTRLVRTrainer", "info")
        trainer = UnifiedTTRLVRTrainer(
            past_epoch_window=verl_config.azr.past_epoch_window,  # AZR ํ•„์ˆ˜ ํŒŒ๋ผ๋ฏธํ„ฐ (TTRLVR์€ ๋งค ๋ผ์šด๋“œ ์ƒˆ ๋ฐ์ดํ„ฐ)
            config=verl_config,
            tokenizer=tokenizer,
            processor=None,  # TTRLVR์€ ํ…์ŠคํŠธ ์ „์šฉ์ด๋ฏ€๋กœ ๋ถˆํ•„์š”
            role_worker_mapping=role_worker_mapping,
            resource_pool_manager=resource_pool_manager,
            ray_worker_group_cls=RayWorkerGroup,
            reward_fn=None,      # TTRLVR์€ ์ž์ฒด ๋ณด์ƒ ๊ณ„์‚ฐ ์‚ฌ์šฉ (use_ttrlvr_rewards=True)
            val_reward_fn=None,  # TTRLVR์€ ๊ฒ€์ฆ ์—†์Œ
            # TTRLVR ํŠนํ™” ํŒŒ๋ผ๋ฏธํ„ฐ
            ttrlvr_config=ttrlvr_config,
            problem_ids=problem_ids,
            total_rounds=args.rounds,
            output_dir=output_dir
        )
        
        # 7. ํ•™์Šต ์‹คํ–‰ (main_azr_ppo.py์™€ ๋™์ผ)
        PrettyPrinter.section_header("๐Ÿš€ Starting Training")
        PrettyPrinter.status("Training", f"Running {args.rounds} rounds with {len(problem_ids)} problems", "info")
        trainer.fit()  # ๋‚ด๋ถ€์—์„œ TTRLVR Phase 1-5 ์‹คํ–‰
        
        PrettyPrinter.section_header("โœ… Training Complete")
        return 0
        
    except KeyboardInterrupt:
        PrettyPrinter.status("Interrupt", "Training interrupted by user", "warning")
        return 130
        
    except Exception as e:
        PrettyPrinter.status("Error", f"Training failed: {e}", "error")
        import traceback
        traceback.print_exc()
        return 1
    finally:
        # Ray cleanup
        if ray.is_initialized():
            ray.shutdown()
        
        PrettyPrinter.status("Cleanup", "Resources cleaned up", "success")


if __name__ == '__main__':
    exit_code = main()
    sys.exit(exit_code)