File size: 16,376 Bytes
f50dc54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# https://github.com/QwenLM/QwQ/blob/main/eval/eval/math_opensource_utils/python_executor.py

import copy
import datetime
import io
import logging
import pickle
import traceback
from concurrent.futures import TimeoutError
from contextlib import redirect_stdout
from functools import partial
from typing import Any, Dict, Optional, List, Tuple
import ast
import time

import numpy as np
import dateutil.relativedelta
import regex
from pebble import ProcessPool
from timeout_decorator import timeout
from tqdm import tqdm

from absolute_zero_reasoner.utils.code_utils.templates import (
    RUN_CODE_TEMPLATE,
    EVAL_INPUT_PREDICTION_TEMPLATE,
    EVAL_OUTPUT_PREDICTION_TEMPLATE,
    VALIDATE_CODE_TEMPLATE,
    CHECK_DETERMINISM_TEMPLATE,
    EVAL_K_INPUT_PREDICTION_TEMPLATE,
    EVAL_K_OUTPUT_PREDICTION_TEMPLATE,
)
from absolute_zero_reasoner.utils.code_utils.checks import contains_banned_imports
from absolute_zero_reasoner.utils.code_utils.parsers import parse_error


class GenericRuntime:
    GLOBAL_DICT = {}
    LOCAL_DICT = None
    HEADERS = []

    def __init__(self):
        self._global_vars = copy.copy(self.GLOBAL_DICT)
        self._local_vars = copy.copy(self.LOCAL_DICT) if self.LOCAL_DICT else None

        for c in self.HEADERS:
            self.exec_code(c)

    def exec_code(self, code_piece: str) -> None:
        if regex.search(r'(\s|^)?input\(', code_piece):
            # regex.search(r'(\s|^)?os.', code_piece):
            raise RuntimeError()
        exec(code_piece, self._global_vars)

        # TODO: use: https://github.com/shroominic/codebox-api
        # @high safe exec in sandbox
        # byte_code = compile_restricted(
        #     code_piece,
        #     filename='<inline code>',
        #     mode='exec'
        # )
        # print("global vars:", self._global_vars)
        # _print_ = PrintCollector
        # exec(byte_code, {'__builtins__': utility_builtins}, None)

    def eval_code(self, expr: str) -> Any:
        return eval(expr, self._global_vars)

    def inject(self, var_dict: Dict[str, Any]) -> None:
        for k, v in var_dict.items():
            self._global_vars[k] = v

    @property
    def answer(self):
        return self._global_vars['answer']


class DateRuntime(GenericRuntime):
    GLOBAL_DICT = {
        'datetime': datetime.datetime,
        'timedelta': dateutil.relativedelta.relativedelta,
        'relativedelta': dateutil.relativedelta.relativedelta
    }


class CustomDict(dict):
    def __iter__(self):
        return list(super().__iter__()).__iter__()


class ColorObjectRuntime(GenericRuntime):
    GLOBAL_DICT = {'dict': CustomDict}


class PythonExecutor:
    def __init__(
        self,
        runtime: Optional[Any] = None,
        get_answer_symbol: Optional[str] = None,
        get_answer_expr: Optional[str] = None,
        get_answer_from_stdout: bool = False,
        timeout_length: int = 10,
        ast_check: bool = False,
        max_workers: int = 1,
    ) -> None:
        self.runtime = runtime if runtime else GenericRuntime()
        self.answer_symbol = get_answer_symbol
        self.answer_expr = get_answer_expr
        self.get_answer_from_stdout = get_answer_from_stdout
        self.timeout_length = timeout_length
        self.ast_check = ast_check
        self.max_workers = max_workers
        self._process_pool = None

    def __del__(self):
        try:
            self.cleanup()
            # self.pool.terminate()
        except Exception as e:
            print(f"Error terminating pool: {e}")
            pass

    def cleanup(self):
        """Explicitly clean up the process pool"""
        if self._process_pool is not None:
            self._process_pool.close()
            self._process_pool.join()
            self._process_pool = None

    def _get_process_pool(self, size_hint):
        """Get or create a ProcessPool with appropriate size"""
        if self._process_pool is None:
            self._process_pool = ProcessPool(max_workers=min(size_hint, self.max_workers))
        return self._process_pool

    def process_generation_to_code(self, gens: str):
        return [g.strip().split('\n') for g in gens]
    
    def run_code(self, code: str, inputs: str, imports: List[str] = []) -> Tuple[str, str]:
        if isinstance(imports, np.ndarray):
            imports = imports.tolist()
        if imports:
            code = '\n'.join(imports) + '\n' + code
        code_snippet = RUN_CODE_TEMPLATE.format(code=code, inputs=inputs)
        # print(code_snippet)
        if self.ast_check:
            try:
                ast.parse(code_snippet)
            except:
                return '', 'error'
        return self.apply(code_snippet)

    def validate_code(self, code: str, inputs: str, imports: List[str] = []) -> bool:
        if isinstance(imports, np.ndarray):
            imports = imports.tolist()
        if imports:
            code = '\n'.join(imports) + '\n' + code
        code_snippet = VALIDATE_CODE_TEMPLATE.format(code=code, inputs=inputs)
        if self.ast_check:
            try:
                ast.parse(code_snippet)
            except:
                return False
        _, status = self.apply(code_snippet)
        return not 'error' in status.lower()

    def eval_input_prediction(self, code: str, gold_output: str, agent_input: str, imports: List[str] = []) -> float:
        if isinstance(imports, np.ndarray):
            imports = imports.tolist()
        if imports:
            code = '\n'.join(imports) + '\n' + code
        code_snippet = EVAL_INPUT_PREDICTION_TEMPLATE.format(code=code, gold_output=gold_output, agent_input=agent_input)
        if self.ast_check:
            try:
                ast.parse(code_snippet)
            except:
                return 0.0
        max_retries = 3
        for retry in range(max_retries):
            try:
                correct, status = self.apply(code_snippet)
                return 0.0 if 'error' in status.lower() or not eval(correct) else 1.0
            except Exception as e:
                if retry == max_retries - 1:
                    error_details = traceback.format_exc()
                    print(f"Error in eval_input_prediction: {e}\n{error_details}")
                    return
                time.sleep(0.1 * (retry + 1))  # Exponential backoff

    def eval_output_prediction(self, code: str, gold_output: str, agent_output: str, imports: List[str] = []) -> float:
        try: # fast check if we dont need to run the code
            if eval(gold_output) == eval(agent_output):
                return 1.0
        except:
            pass
        if isinstance(imports, np.ndarray):
            imports = imports.tolist()
        if imports:
            code = '\n'.join(imports) + '\n' + code
        code_snippet = EVAL_OUTPUT_PREDICTION_TEMPLATE.format(code=code, gold_output=gold_output, agent_output=agent_output)
        if self.ast_check:
            try:
                ast.parse(code_snippet)
            except:
                return 0.0
        max_retries = 3
        for retry in range(max_retries):
            try:
                correct, status = self.apply(code_snippet)
                return 0.0 if 'error' in status.lower() or not eval(correct) else 1.0
            except Exception as e:
                if retry == max_retries - 1:
                    error_details = traceback.format_exc()
                    print(f"Error in eval_output_prediction: {e}\n{error_details}")
                    return
                time.sleep(0.1 * (retry + 1))  # Exponential backoff

    def eval_k_input_prediction(self, code: str, gold_output: str, k_agent_inputs: List[str], imports: List[str] = []) -> List[float]:
        if isinstance(imports, np.ndarray):
            imports = imports.tolist()
        if imports:
            code = '\n'.join(imports) + '\n' + code
        invalid_lists = []
        valid_k_agent_inputs = []
        for k_agent_input in k_agent_inputs:
            try:
                ast.parse(f'f({k_agent_input})')
                valid_k_agent_inputs.append(k_agent_input)
            except:
                invalid_lists.append(0.0)
        acc_list, status = self.apply(EVAL_K_INPUT_PREDICTION_TEMPLATE(code=code, gold_output=gold_output, k_agent_inputs=valid_k_agent_inputs))
        assert 'error' not in status.lower()
        output_acc = eval(acc_list) + invalid_lists
        assert len(output_acc) == len(k_agent_inputs)
        return output_acc

    def eval_k_output_prediction(self, code: str, gold_output: str, k_agent_outputs: List[str], imports: List[str] = []) -> List[float]:
        if isinstance(imports, np.ndarray):
            imports = imports.tolist()
        if imports:
            code = '\n'.join(imports) + '\n' + code
        invalid_lists = []
        valid_k_agent_outputs = []
        for k_agent_output in k_agent_outputs:
            try:
                if k_agent_output != '':
                    ast.parse(f'f({k_agent_output})')
                    valid_k_agent_outputs.append(k_agent_output)
                else:
                    invalid_lists.append(0.0)
            except:
                invalid_lists.append(0.0)
        acc_list, status = self.apply(EVAL_K_OUTPUT_PREDICTION_TEMPLATE(code=code, gold_output=gold_output, k_agent_outputs=valid_k_agent_outputs))
        assert 'error' not in status.lower()
        output_acc = eval(acc_list) + invalid_lists
        assert len(output_acc) == len(k_agent_outputs)
        return output_acc

    def check_all(
        self,
        code: str,
        inputs: str,
        banned_keywords: List[str] = [],
        check_determinism: bool = True,
        imports: List[str] = [],
        check_error: bool = False,
        banned_keywords_for_errors_and_exceptions: List[str] = [],
    ) -> Tuple[bool, str]:
        if isinstance(imports, np.ndarray):
            imports = imports.tolist()
        if imports:
            code = '\n'.join(imports) + '\n' + code
        if contains_banned_imports(code=code, banned_keywords=banned_keywords, banned_keywords_for_errors_and_exceptions=banned_keywords_for_errors_and_exceptions if check_error else []):
            return False, None
        if check_error:
            code_snippet = RUN_CODE_TEMPLATE.format(code=code, inputs=inputs)
            try:
                ast.parse(code_snippet)
            except:
                return False, 'error'
            output, status = self.apply(code_snippet)
            if check_determinism: # run the code again, see if outputs are same
                output_2, status_2 = self.apply(code_snippet)
                if status_2.lower() != status.lower() and output != output_2:
                    return False, 'error'
            # True if the code is valid code but might have error, output no error if the code returns something
            return True, 'NoError' if status.lower() == 'done' else parse_error(status)
        else:
            if check_determinism:
                code_snippet = CHECK_DETERMINISM_TEMPLATE.format(code=code, inputs=inputs)
            else:
                code_snippet = RUN_CODE_TEMPLATE.format(code=code, inputs=inputs)
            if self.ast_check:
                try:
                    ast.parse(code_snippet)
                except:
                    return False, 'error'
            output, status = self.apply(code_snippet)
            return not 'error' in status.lower(), output

    @staticmethod
    def execute(
        code,
        get_answer_from_stdout=None,
        runtime=None,
        answer_symbol=None,
        answer_expr=None,
        timeout_length=10,
        auto_mode=False
    ):
        try:
            if auto_mode:
                if "print(" in code[-1]:
                    program_io = io.StringIO()
                    with redirect_stdout(program_io):
                        timeout(timeout_length)(runtime.exec_code)('\n'.join(code))
                    program_io.seek(0)
                    result = program_io.read()
                else:
                    # print(code)
                    timeout(timeout_length)(runtime.exec_code)('\n'.join(code[:-1]))
                    result = timeout(timeout_length)(runtime.eval_code)(code[-1])
            else:
                if get_answer_from_stdout:
                    program_io = io.StringIO()
                    with redirect_stdout(program_io):
                        timeout(timeout_length)(runtime.exec_code)('\n'.join(code))
                    program_io.seek(0)
                    result = program_io.read()
                elif answer_symbol:
                    timeout(timeout_length)(runtime.exec_code)('\n'.join(code))
                    result = runtime._global_vars[answer_symbol]
                elif answer_expr:
                    timeout(timeout_length)(runtime.exec_code)('\n'.join(code))
                    result = timeout(timeout_length)(runtime.eval_code)(answer_expr)
                else:
                    timeout(timeout_length)(runtime.exec_code)('\n'.join(code[:-1]))
                    result = timeout(timeout_length)(runtime.eval_code)(code[-1])
            report = "Done"
            str(result)           # codec check
            pickle.dumps(result)  # serialization check
        except:
            result = ''
            report = traceback.format_exc().split('\n')[-2]
        return result, report

    def apply(self, code):
        return self.batch_apply([code])[0]

    @staticmethod
    def truncate(s, max_length=400):
        half = max_length // 2
        if len(s) > max_length:
            s = s[:half] + "..." + s[-half:]
        return s

    def batch_apply(self, batch_code):
        all_code_snippets = self.process_generation_to_code(batch_code)

        timeout_cnt = 0
        all_exec_results = []
        
        pool = self._get_process_pool(len(all_code_snippets))
        executor = partial(
            self.execute,
            get_answer_from_stdout=self.get_answer_from_stdout,
            runtime=self.runtime,
            answer_symbol=self.answer_symbol,
            answer_expr=self.answer_expr,
            timeout_length=self.timeout_length,
            auto_mode=True
        )
        
        try:
            future = pool.map(executor, all_code_snippets, timeout=self.timeout_length)
            iterator = future.result()

            if len(all_code_snippets) > 100:
                progress_bar = tqdm(total=len(all_code_snippets), desc="Execute")
            else:
                progress_bar = None

            while True:
                try:
                    result = next(iterator)
                    all_exec_results.append(result)
                except StopIteration:
                    break
                except TimeoutError as error:
                    logging.warning(f"Timeout error in code execution: {error}")
                    all_exec_results.append(("", "Timeout Error"))
                    timeout_cnt += 1
                except Exception as error:
                    logging.warning(f"Error in code execution: {error}")
                    all_exec_results.append(("", f"Error: {str(error)}"))
                if progress_bar is not None:
                    progress_bar.update(1)

            if progress_bar is not None:
                progress_bar.close()
        except Exception as e:
            logging.error(f"Critical error in batch execution: {e}")
            # Make sure we have results for all snippets
            while len(all_exec_results) < len(all_code_snippets):
                all_exec_results.append(("", f"Critical Error: {str(e)}"))
            
            # Cleanup the pool on critical errors
            self.cleanup()

        batch_results = []
        for code, (res, report) in zip(all_code_snippets, all_exec_results):
            # post processing
            res, report = str(res).strip(), str(report).strip()
            res, report = self.truncate(res), self.truncate(report)
            batch_results.append((res, report))
        return batch_results


def _test():
    batch_code = [
"""
def f(a):
    return a
print(f(1,2))
"""
    ]

    executor = PythonExecutor(get_answer_from_stdout=True)
    predictions = executor.apply(batch_code[0])
    print(predictions)


if __name__ == '__main__':
    _test()