File size: 16,376 Bytes
f50dc54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# https://github.com/QwenLM/QwQ/blob/main/eval/eval/math_opensource_utils/python_executor.py
import copy
import datetime
import io
import logging
import pickle
import traceback
from concurrent.futures import TimeoutError
from contextlib import redirect_stdout
from functools import partial
from typing import Any, Dict, Optional, List, Tuple
import ast
import time
import numpy as np
import dateutil.relativedelta
import regex
from pebble import ProcessPool
from timeout_decorator import timeout
from tqdm import tqdm
from absolute_zero_reasoner.utils.code_utils.templates import (
RUN_CODE_TEMPLATE,
EVAL_INPUT_PREDICTION_TEMPLATE,
EVAL_OUTPUT_PREDICTION_TEMPLATE,
VALIDATE_CODE_TEMPLATE,
CHECK_DETERMINISM_TEMPLATE,
EVAL_K_INPUT_PREDICTION_TEMPLATE,
EVAL_K_OUTPUT_PREDICTION_TEMPLATE,
)
from absolute_zero_reasoner.utils.code_utils.checks import contains_banned_imports
from absolute_zero_reasoner.utils.code_utils.parsers import parse_error
class GenericRuntime:
GLOBAL_DICT = {}
LOCAL_DICT = None
HEADERS = []
def __init__(self):
self._global_vars = copy.copy(self.GLOBAL_DICT)
self._local_vars = copy.copy(self.LOCAL_DICT) if self.LOCAL_DICT else None
for c in self.HEADERS:
self.exec_code(c)
def exec_code(self, code_piece: str) -> None:
if regex.search(r'(\s|^)?input\(', code_piece):
# regex.search(r'(\s|^)?os.', code_piece):
raise RuntimeError()
exec(code_piece, self._global_vars)
# TODO: use: https://github.com/shroominic/codebox-api
# @high safe exec in sandbox
# byte_code = compile_restricted(
# code_piece,
# filename='<inline code>',
# mode='exec'
# )
# print("global vars:", self._global_vars)
# _print_ = PrintCollector
# exec(byte_code, {'__builtins__': utility_builtins}, None)
def eval_code(self, expr: str) -> Any:
return eval(expr, self._global_vars)
def inject(self, var_dict: Dict[str, Any]) -> None:
for k, v in var_dict.items():
self._global_vars[k] = v
@property
def answer(self):
return self._global_vars['answer']
class DateRuntime(GenericRuntime):
GLOBAL_DICT = {
'datetime': datetime.datetime,
'timedelta': dateutil.relativedelta.relativedelta,
'relativedelta': dateutil.relativedelta.relativedelta
}
class CustomDict(dict):
def __iter__(self):
return list(super().__iter__()).__iter__()
class ColorObjectRuntime(GenericRuntime):
GLOBAL_DICT = {'dict': CustomDict}
class PythonExecutor:
def __init__(
self,
runtime: Optional[Any] = None,
get_answer_symbol: Optional[str] = None,
get_answer_expr: Optional[str] = None,
get_answer_from_stdout: bool = False,
timeout_length: int = 10,
ast_check: bool = False,
max_workers: int = 1,
) -> None:
self.runtime = runtime if runtime else GenericRuntime()
self.answer_symbol = get_answer_symbol
self.answer_expr = get_answer_expr
self.get_answer_from_stdout = get_answer_from_stdout
self.timeout_length = timeout_length
self.ast_check = ast_check
self.max_workers = max_workers
self._process_pool = None
def __del__(self):
try:
self.cleanup()
# self.pool.terminate()
except Exception as e:
print(f"Error terminating pool: {e}")
pass
def cleanup(self):
"""Explicitly clean up the process pool"""
if self._process_pool is not None:
self._process_pool.close()
self._process_pool.join()
self._process_pool = None
def _get_process_pool(self, size_hint):
"""Get or create a ProcessPool with appropriate size"""
if self._process_pool is None:
self._process_pool = ProcessPool(max_workers=min(size_hint, self.max_workers))
return self._process_pool
def process_generation_to_code(self, gens: str):
return [g.strip().split('\n') for g in gens]
def run_code(self, code: str, inputs: str, imports: List[str] = []) -> Tuple[str, str]:
if isinstance(imports, np.ndarray):
imports = imports.tolist()
if imports:
code = '\n'.join(imports) + '\n' + code
code_snippet = RUN_CODE_TEMPLATE.format(code=code, inputs=inputs)
# print(code_snippet)
if self.ast_check:
try:
ast.parse(code_snippet)
except:
return '', 'error'
return self.apply(code_snippet)
def validate_code(self, code: str, inputs: str, imports: List[str] = []) -> bool:
if isinstance(imports, np.ndarray):
imports = imports.tolist()
if imports:
code = '\n'.join(imports) + '\n' + code
code_snippet = VALIDATE_CODE_TEMPLATE.format(code=code, inputs=inputs)
if self.ast_check:
try:
ast.parse(code_snippet)
except:
return False
_, status = self.apply(code_snippet)
return not 'error' in status.lower()
def eval_input_prediction(self, code: str, gold_output: str, agent_input: str, imports: List[str] = []) -> float:
if isinstance(imports, np.ndarray):
imports = imports.tolist()
if imports:
code = '\n'.join(imports) + '\n' + code
code_snippet = EVAL_INPUT_PREDICTION_TEMPLATE.format(code=code, gold_output=gold_output, agent_input=agent_input)
if self.ast_check:
try:
ast.parse(code_snippet)
except:
return 0.0
max_retries = 3
for retry in range(max_retries):
try:
correct, status = self.apply(code_snippet)
return 0.0 if 'error' in status.lower() or not eval(correct) else 1.0
except Exception as e:
if retry == max_retries - 1:
error_details = traceback.format_exc()
print(f"Error in eval_input_prediction: {e}\n{error_details}")
return
time.sleep(0.1 * (retry + 1)) # Exponential backoff
def eval_output_prediction(self, code: str, gold_output: str, agent_output: str, imports: List[str] = []) -> float:
try: # fast check if we dont need to run the code
if eval(gold_output) == eval(agent_output):
return 1.0
except:
pass
if isinstance(imports, np.ndarray):
imports = imports.tolist()
if imports:
code = '\n'.join(imports) + '\n' + code
code_snippet = EVAL_OUTPUT_PREDICTION_TEMPLATE.format(code=code, gold_output=gold_output, agent_output=agent_output)
if self.ast_check:
try:
ast.parse(code_snippet)
except:
return 0.0
max_retries = 3
for retry in range(max_retries):
try:
correct, status = self.apply(code_snippet)
return 0.0 if 'error' in status.lower() or not eval(correct) else 1.0
except Exception as e:
if retry == max_retries - 1:
error_details = traceback.format_exc()
print(f"Error in eval_output_prediction: {e}\n{error_details}")
return
time.sleep(0.1 * (retry + 1)) # Exponential backoff
def eval_k_input_prediction(self, code: str, gold_output: str, k_agent_inputs: List[str], imports: List[str] = []) -> List[float]:
if isinstance(imports, np.ndarray):
imports = imports.tolist()
if imports:
code = '\n'.join(imports) + '\n' + code
invalid_lists = []
valid_k_agent_inputs = []
for k_agent_input in k_agent_inputs:
try:
ast.parse(f'f({k_agent_input})')
valid_k_agent_inputs.append(k_agent_input)
except:
invalid_lists.append(0.0)
acc_list, status = self.apply(EVAL_K_INPUT_PREDICTION_TEMPLATE(code=code, gold_output=gold_output, k_agent_inputs=valid_k_agent_inputs))
assert 'error' not in status.lower()
output_acc = eval(acc_list) + invalid_lists
assert len(output_acc) == len(k_agent_inputs)
return output_acc
def eval_k_output_prediction(self, code: str, gold_output: str, k_agent_outputs: List[str], imports: List[str] = []) -> List[float]:
if isinstance(imports, np.ndarray):
imports = imports.tolist()
if imports:
code = '\n'.join(imports) + '\n' + code
invalid_lists = []
valid_k_agent_outputs = []
for k_agent_output in k_agent_outputs:
try:
if k_agent_output != '':
ast.parse(f'f({k_agent_output})')
valid_k_agent_outputs.append(k_agent_output)
else:
invalid_lists.append(0.0)
except:
invalid_lists.append(0.0)
acc_list, status = self.apply(EVAL_K_OUTPUT_PREDICTION_TEMPLATE(code=code, gold_output=gold_output, k_agent_outputs=valid_k_agent_outputs))
assert 'error' not in status.lower()
output_acc = eval(acc_list) + invalid_lists
assert len(output_acc) == len(k_agent_outputs)
return output_acc
def check_all(
self,
code: str,
inputs: str,
banned_keywords: List[str] = [],
check_determinism: bool = True,
imports: List[str] = [],
check_error: bool = False,
banned_keywords_for_errors_and_exceptions: List[str] = [],
) -> Tuple[bool, str]:
if isinstance(imports, np.ndarray):
imports = imports.tolist()
if imports:
code = '\n'.join(imports) + '\n' + code
if contains_banned_imports(code=code, banned_keywords=banned_keywords, banned_keywords_for_errors_and_exceptions=banned_keywords_for_errors_and_exceptions if check_error else []):
return False, None
if check_error:
code_snippet = RUN_CODE_TEMPLATE.format(code=code, inputs=inputs)
try:
ast.parse(code_snippet)
except:
return False, 'error'
output, status = self.apply(code_snippet)
if check_determinism: # run the code again, see if outputs are same
output_2, status_2 = self.apply(code_snippet)
if status_2.lower() != status.lower() and output != output_2:
return False, 'error'
# True if the code is valid code but might have error, output no error if the code returns something
return True, 'NoError' if status.lower() == 'done' else parse_error(status)
else:
if check_determinism:
code_snippet = CHECK_DETERMINISM_TEMPLATE.format(code=code, inputs=inputs)
else:
code_snippet = RUN_CODE_TEMPLATE.format(code=code, inputs=inputs)
if self.ast_check:
try:
ast.parse(code_snippet)
except:
return False, 'error'
output, status = self.apply(code_snippet)
return not 'error' in status.lower(), output
@staticmethod
def execute(
code,
get_answer_from_stdout=None,
runtime=None,
answer_symbol=None,
answer_expr=None,
timeout_length=10,
auto_mode=False
):
try:
if auto_mode:
if "print(" in code[-1]:
program_io = io.StringIO()
with redirect_stdout(program_io):
timeout(timeout_length)(runtime.exec_code)('\n'.join(code))
program_io.seek(0)
result = program_io.read()
else:
# print(code)
timeout(timeout_length)(runtime.exec_code)('\n'.join(code[:-1]))
result = timeout(timeout_length)(runtime.eval_code)(code[-1])
else:
if get_answer_from_stdout:
program_io = io.StringIO()
with redirect_stdout(program_io):
timeout(timeout_length)(runtime.exec_code)('\n'.join(code))
program_io.seek(0)
result = program_io.read()
elif answer_symbol:
timeout(timeout_length)(runtime.exec_code)('\n'.join(code))
result = runtime._global_vars[answer_symbol]
elif answer_expr:
timeout(timeout_length)(runtime.exec_code)('\n'.join(code))
result = timeout(timeout_length)(runtime.eval_code)(answer_expr)
else:
timeout(timeout_length)(runtime.exec_code)('\n'.join(code[:-1]))
result = timeout(timeout_length)(runtime.eval_code)(code[-1])
report = "Done"
str(result) # codec check
pickle.dumps(result) # serialization check
except:
result = ''
report = traceback.format_exc().split('\n')[-2]
return result, report
def apply(self, code):
return self.batch_apply([code])[0]
@staticmethod
def truncate(s, max_length=400):
half = max_length // 2
if len(s) > max_length:
s = s[:half] + "..." + s[-half:]
return s
def batch_apply(self, batch_code):
all_code_snippets = self.process_generation_to_code(batch_code)
timeout_cnt = 0
all_exec_results = []
pool = self._get_process_pool(len(all_code_snippets))
executor = partial(
self.execute,
get_answer_from_stdout=self.get_answer_from_stdout,
runtime=self.runtime,
answer_symbol=self.answer_symbol,
answer_expr=self.answer_expr,
timeout_length=self.timeout_length,
auto_mode=True
)
try:
future = pool.map(executor, all_code_snippets, timeout=self.timeout_length)
iterator = future.result()
if len(all_code_snippets) > 100:
progress_bar = tqdm(total=len(all_code_snippets), desc="Execute")
else:
progress_bar = None
while True:
try:
result = next(iterator)
all_exec_results.append(result)
except StopIteration:
break
except TimeoutError as error:
logging.warning(f"Timeout error in code execution: {error}")
all_exec_results.append(("", "Timeout Error"))
timeout_cnt += 1
except Exception as error:
logging.warning(f"Error in code execution: {error}")
all_exec_results.append(("", f"Error: {str(error)}"))
if progress_bar is not None:
progress_bar.update(1)
if progress_bar is not None:
progress_bar.close()
except Exception as e:
logging.error(f"Critical error in batch execution: {e}")
# Make sure we have results for all snippets
while len(all_exec_results) < len(all_code_snippets):
all_exec_results.append(("", f"Critical Error: {str(e)}"))
# Cleanup the pool on critical errors
self.cleanup()
batch_results = []
for code, (res, report) in zip(all_code_snippets, all_exec_results):
# post processing
res, report = str(res).strip(), str(report).strip()
res, report = self.truncate(res), self.truncate(report)
batch_results.append((res, report))
return batch_results
def _test():
batch_code = [
"""
def f(a):
return a
print(f(1,2))
"""
]
executor = PythonExecutor(get_answer_from_stdout=True)
predictions = executor.apply(batch_code[0])
print(predictions)
if __name__ == '__main__':
_test()
|