File size: 51,360 Bytes
24c2665 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 |
import os
import json
import glob
import argparse
from collections import defaultdict
import pandas as pd
from transformers import AutoTokenizer
import wandb
from tqdm import tqdm
from itertools import repeat
from concurrent.futures import ThreadPoolExecutor
import threading
import matplotlib.pyplot as plt
import re
# Create a thread-local storage for tokenizer
thread_local = threading.local()
def extract_last_boxed(text):
"""Extract content inside the last \boxed in LaTeX text"""
pattern = r'\\boxed\{((?:[^{}]|\{(?:[^{}]|\{[^{}]*\})*\})*)\}'
matches = list(re.finditer(pattern, text))
if matches:
return matches[-1].group(0)
return None
def get_tokenizer(model_name):
"""Get or create thread-local tokenizer"""
if not hasattr(thread_local, 'tokenizer'):
thread_local.tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
return thread_local.tokenizer
def normalize_model_name(path):
"""Extract and normalize model name from path"""
parts = path.split('/')
# First check for checkpoint pattern
for part in parts[::-1]:
if 'checkpoint' in part:
idx = parts.index(part)
model_name = parts[idx-1]
checkpoint = part
return f"{model_name}-{checkpoint}"
# Add check for global_step pattern
if 'global_step' in part:
idx = parts.index(part)
model_name = parts[idx-1]
return f"{model_name}-{part}"
# If no checkpoint or global_step found, use the last meaningful part and add checkpoint-final
for part in reversed(parts):
if any(x in part.lower() for x in ['llama', 'qwen', 'gpt', 'mistral']):
return f"{part}-checkpoint-final"
return "unknown_model"
def get_benchmark_name(path):
"""Extract benchmark name from path"""
parts = path.split('/')
# Look for common benchmark names in the path
# for part in parts:
# if part.lower() in ['aime24', 'gsm8k', 'math500']:
# return part.lower()
#TODO: potential bug for diff path
return parts[-2]
# return "unknown_benchmark"
import os
import json
import jieba
import re
def contains_chinese(string):
# 判断字符串中的每个字符是否为中文
for char in string:
# 中文字符的Unicode范围是:\u4e00到\u9fff
if '\u4e00' <= char <= '\u9fff':
return True
return False
def jaccard_similarity(sentence1, sentence2):
if contains_chinese(sentence1):
set1 = set(jieba.cut(sentence1))
else:
if " " not in sentence1 or "\n" not in sentence1:
set1 = set(sentence1)
else:
set1 = set(sentence1.split())
if contains_chinese(sentence2):
set2 = set(jieba.cut(sentence2))
else:
if " " not in sentence2 or "\n" not in sentence2:
set2 = set(sentence2)
else:
set2 = set(sentence2.split())
intersection = set1.intersection(set2)
union = set1.union(set2)
return len(intersection) / len(union)
def is_repeat(text, window_size=10, threshold=0.85, min_length=20):
if len(text) <= window_size:
return False
pre = text[:window_size]
for i in range(1, len(text) // window_size):
cur = text[window_size * i : window_size * (i + 1)]
if jaccard_similarity(pre, cur) >= threshold:
return True
pre = cur
for char in ["\n", ".", "。"]:
text_split = text.split(char)
if len(text_split) == 1:
return False
text_split = [t for t in text_split if len(t) >= min_length]
pre = text_split[0]
for cur in text_split[1:]:
if jaccard_similarity(pre, cur) >= threshold:
return True
pre = cur
return False
def get_jsonl_path(metrics_file):
"""Get corresponding jsonl file path"""
# Get the directory containing the metrics file
metric_folder = os.path.dirname(metrics_file)
# The JSONL file should be in the same directory with a .jsonl extension
# and without the '_metrics' suffix
base_name = os.path.basename(metrics_file).replace('_metrics.json', '')
jsonl_file = os.path.join(metric_folder, f"{base_name}.jsonl")
if not os.path.exists(jsonl_file):
raise FileNotFoundError(f"JSONL file not found: {jsonl_file}")
return jsonl_file
def calculate_avg_tokens_and_keywords(jsonl_path, tokenizer):
"""Calculate average tokens and keyword frequencies in the first code element"""
if not os.path.exists(jsonl_path):
print(f"Warning: JSONL file not found: {jsonl_path}")
return 0, 0, 0, 0, 0, 0, 0, 0, 0
keywords = {"recheck", "rethink", "try again", "wait", "alternatively", "retry", "however"}
total_tokens = 0
total_keywords = 0
total_correct_tokens = 0
total_wrong_tokens = 0
total_stop_tokens = 0
clip_count = 0
total_repeats = 0
count = 0
correct_count = 0
wrong_count = 0
stop_count = 0
box_count = 0
try:
with open(jsonl_path, 'r', encoding='utf-8') as f:
for line in f:
data = json.loads(line)
if 'code' in data and isinstance(data['code'], list) and len(data['code']) > 0:
code_text = data['code'][0].lower()
tokens = len(tokenizer.encode(code_text))
total_tokens += tokens
# Count keywords
keyword_count = sum(code_text.count(keyword.lower()) for keyword in keywords)
total_keywords += keyword_count
# Check for \boxed occurrences
if extract_last_boxed(code_text) is not None:
box_count += 1
# Check finish reason
if data.get('finish_reason', [None])[0] == 'length':
clip_count += 1
elif data.get('finish_reason', [None])[0] == 'stop':
total_stop_tokens += tokens
stop_count += 1
# Separate tokens for correct and wrong answers
is_correct = data.get('score', [False])[0] if isinstance(data.get('score', []), list) else False
if is_correct:
total_correct_tokens += tokens
correct_count += 1
else:
total_wrong_tokens += tokens
wrong_count += 1
try:
if is_repeat(code_text):
# repeat_count += 1
total_repeats += 1
except Exception as e:
# print("test")
total_repeats += 1
count += 1
except Exception as e:
print(f"Error processing {jsonl_path}: {e}")
return 0, 0, 0, 0, 0, 0, 0, 0, 0
avg_correct_tokens = total_correct_tokens / correct_count if correct_count > 0 else 0
avg_wrong_tokens = total_wrong_tokens / wrong_count if wrong_count > 0 else 0
clip_ratio = clip_count / count if count > 0 else 0
avg_stop_tokens = total_stop_tokens / stop_count if stop_count > 0 else 0
box_ratio = box_count / count if count > 0 else 0 # Calculate the ratio of boxed occurrences
repeat_ratio = total_repeats / count if count > 0 else 0 # Calculate the repeat ratio
return (total_tokens / count if count > 0 else 0,
total_keywords / count if count > 0 else 0,
avg_correct_tokens,
avg_wrong_tokens,
clip_ratio,
avg_stop_tokens,
box_ratio, # Return the boxed ratio
stop_count / count if count > 0 else 0,
repeat_ratio)
def process_file(args):
"""Process a single metrics file"""
metrics_file, model_name = args
try:
model_name_norm = normalize_model_name(metrics_file)
benchmark = get_benchmark_name(metrics_file)
with open(metrics_file, 'r') as f:
metrics = json.load(f)
acc = metrics.get('acc', 0)
pass_acc = metrics.get('pass_acc', 0)
jsonl_file = get_jsonl_path(metrics_file)
tokenizer = get_tokenizer(model_name)
avg_tokens, avg_keywords, avg_correct_tokens, avg_wrong_tokens, clip_ratio, avg_stop_tokens, box_ratio, stop_ratio, repeat_ratio = calculate_avg_tokens_and_keywords(jsonl_file, tokenizer)
return model_name_norm, benchmark, {
'acc': acc,
"pass_acc": pass_acc,
'tokens': avg_tokens,
'keywords': avg_keywords,
'correct_tokens': avg_correct_tokens,
'wrong_tokens': avg_wrong_tokens,
'clip_ratio': clip_ratio,
'avg_stop_tokens': avg_stop_tokens,
'stop_ratio': stop_ratio,
'box_ratio': box_ratio, # Add box_ratio to the result
'repeat_ratio': repeat_ratio # Include the repeat_ratio in the result
}
except Exception as e:
print(f"Error processing {metrics_file}: {e}")
return None
def collect_results(base_dir, model_name, num_threads=8, temperature=None):
# Initialize results storage
results = defaultdict(lambda: defaultdict(dict))
# Find all metrics.json files
metrics_files = glob.glob(f"{base_dir}/**/test_*metrics.json", recursive=True)
if temperature is not None:
metrics_files = [f for f in metrics_files if f"t{temperature}" in f]
print("metrics_files ==== ", metrics_files)
# Create arguments for parallel processing
process_args = [(f, model_name) for f in metrics_files]
print("process_args ==== ", process_args)
# Process files in parallel
with ThreadPoolExecutor(max_workers=num_threads) as executor:
futures = list(tqdm(
executor.map(process_file, process_args),
total=len(metrics_files),
desc="Processing files"
))
# Collect results
for result in futures:
if result is not None:
model_name, benchmark, metrics = result
results[model_name][benchmark] = metrics
return results
def create_summary(results):
# Convert results to DataFrame
print("results ==== ")
for itm in results.items():
print(itm)
rows = []
for model, benchmarks in results.items():
row = {'model': model}
print("model ==== ", model)
total_acc = 0
total_pass_acc = 0
total_tokens = 0
total_keywords = 0
total_correct_tokens = 0
total_wrong_tokens = 0
total_clip_ratio = 0
total_stop_tokens = 0
total_stop_ratio = 0
total_box_ratio = 0
total_repeat_ratio = 0 # Track total repeat ratio
count = 0
for benchmark, metrics in benchmarks.items():
# Add accuracy and token metrics
row[f'{benchmark}_acc'] = metrics['acc']
row[f'{benchmark}_pass_acc'] = metrics['pass_acc']
row[f'{benchmark}_tokens'] = metrics['tokens']
row[f'{benchmark}_keywords'] = metrics['keywords']
row[f'{benchmark}_correct_tokens'] = metrics['correct_tokens']
row[f'{benchmark}_wrong_tokens'] = metrics['wrong_tokens']
row[f'{benchmark}_clip_ratio'] = metrics['clip_ratio']
row[f'{benchmark}_stop_tokens'] = metrics['avg_stop_tokens']
row[f'{benchmark}_stop_ratio'] = metrics['stop_ratio']
row[f'{benchmark}_box_ratio'] = metrics['box_ratio'] # Add box_ratio to the row
row[f'{benchmark}_repeat_ratio'] = metrics['repeat_ratio'] # Add repeat_ratio to the row
# Accumulate totals
total_acc += metrics['acc']
total_pass_acc += metrics['pass_acc']
total_tokens += metrics['tokens']
total_keywords += metrics['keywords']
total_correct_tokens += metrics['correct_tokens']
total_wrong_tokens += metrics['wrong_tokens']
total_clip_ratio += metrics['clip_ratio']
total_stop_tokens += metrics['avg_stop_tokens']
total_stop_ratio += metrics['stop_ratio']
total_box_ratio += metrics['box_ratio']
total_repeat_ratio += metrics['repeat_ratio'] # Add repeat_ratio to the total
count += 1
if count > 0:
# Calculate averages across all benchmarks
row['avg_acc'] = total_acc / count
row['avg_pass_acc'] = total_pass_acc / count
row['avg_tokens'] = total_tokens / count
row['avg_keywords'] = total_keywords / count
row['avg_correct_tokens'] = total_correct_tokens / count
row['avg_wrong_tokens'] = total_wrong_tokens / count
row['avg_clip_ratio'] = total_clip_ratio / count
row['avg_stop_tokens'] = total_stop_tokens / count
row['avg_stop_ratio'] = total_stop_ratio / count
row['avg_box_ratio'] = total_box_ratio / count # Average box_ratio
row['avg_repeat_ratio'] = total_repeat_ratio / count # Average repeat_ratio
rows.append(row)
print("rows ==== ", rows)
df = pd.DataFrame(rows)
# Sort DataFrame by checkpoint/global_step number
def get_step_number(model_name):
if 'checkpoint-final' in model_name:
return float('inf')
# Check for checkpoint pattern
checkpoint_match = re.search(r'checkpoint-(\d+)', model_name)
if checkpoint_match:
return int(checkpoint_match.group(1))
# Check for global_step pattern
global_step_match = re.search(r'global_step[_]?(\d+)', model_name)
if global_step_match:
return int(global_step_match.group(1))
return float('inf')
# Sort DataFrame based on step numbers
print("df ==== ", df)
if "model" not in df.columns:
print(df)
print(f"What is wrong here?")
df['sort_key'] = df['model'].apply(get_step_number)
df = df.sort_values('sort_key')
df = df.drop('sort_key', axis=1)
return df
def sync_to_wandb(args, results, project_name, df, plot_dir, csv_path):
"""Sync results, CSV table and plots to wandb"""
# Initialize wandb run
run = wandb.init(
project=project_name,
name=args.wandb_run_name,
reinit=True
)
# Log the CSV table as a wandb Table
table = wandb.Table(dataframe=df)
wandb.log({"results_table": table})
# Also save the CSV file as an artifact
artifact = wandb.Artifact('evaluation_results', type='dataset')
artifact.add_file(csv_path)
run.log_artifact(artifact)
# Log plots
if os.path.exists(plot_dir):
for plot_file in os.listdir(plot_dir):
if plot_file.endswith('_progress.png'):
plot_path = os.path.join(plot_dir, plot_file)
wandb.log({f"plots/{plot_file}": wandb.Image(plot_path)})
if plot_file.endswith('_tokens_keywords.png'):
plot_path = os.path.join(plot_dir, plot_file)
wandb.log({f"plots/{plot_file}": wandb.Image(plot_path)})
if plot_file.endswith('_acc_tokens.png'):
plot_path = os.path.join(plot_dir, plot_file)
wandb.log({f"plots/{plot_file}": wandb.Image(plot_path)})
if plot_file.endswith('_acc_keywords.png'):
plot_path = os.path.join(plot_dir, plot_file)
wandb.log({f"plots/{plot_file}": wandb.Image(plot_path)})
if plot_file.endswith('_correct_tokens.png'):
plot_path = os.path.join(plot_dir, plot_file)
wandb.log({f"plots/{plot_file}": wandb.Image(plot_path)})
if plot_file.endswith('_wrong_tokens.png'):
plot_path = os.path.join(plot_dir, plot_file)
wandb.log({f"plots/{plot_file}": wandb.Image(plot_path)})
if plot_file.endswith('_clip_ratio.png'):
plot_path = os.path.join(plot_dir, plot_file)
wandb.log({f"plots/{plot_file}": wandb.Image(plot_path)})
if plot_file.endswith('_avg_stop_tokens.png'):
plot_path = os.path.join(plot_dir, plot_file)
wandb.log({f"plots/{plot_file}": wandb.Image(plot_path)})
if plot_file.endswith('box_ratio_and_token_length.png'):
plot_path = os.path.join(plot_dir, plot_file)
wandb.log({f"plots/{plot_file}": wandb.Image(plot_path)})
if plot_file.endswith('repeat_ratio_and_token_length.png'):
plot_path = os.path.join(plot_dir, plot_file)
wandb.log({f"plots/{plot_file}": wandb.Image(plot_path)})
if plot_file.endswith('pass_acc.png'):
plot_path = os.path.join(plot_dir, plot_file)
wandb.log({f"plots/{plot_file}": wandb.Image(plot_path)})
run.finish()
def sort_checkpoints(models):
"""Sort checkpoints numerically with final checkpoint at the end"""
def get_checkpoint_num(model_name):
if 'checkpoint-final' in model_name:
return float('inf')
# Check for checkpoint pattern
checkpoint_match = re.search(r'checkpoint-(\d+)', model_name)
if checkpoint_match:
return int(checkpoint_match.group(1))
# Check for global_step pattern
global_step_match = re.search(r'global_step[_]?(\d+)', model_name)
if global_step_match:
return int(global_step_match.group(1))
return float('inf')
# Group models by base name (everything before checkpoint- or global_step)
model_groups = defaultdict(list)
for model in models:
# Split on either checkpoint- or global_step
base_name = re.split(r'(?:checkpoint-|global_step)', model)[0].rstrip('-')
model_groups[base_name].append(model)
# Sort each group's checkpoints
sorted_models = []
for base_name, checkpoints in model_groups.items():
sorted_checkpoints = sorted(checkpoints, key=get_checkpoint_num)
sorted_models.extend(sorted_checkpoints)
return sorted_models
def plot_training_progress(results, output_dir, benchmarks=None):
"""Plot training progress for each model series"""
# Get all unique benchmarks
all_benchmarks = set()
for model_metrics in results.values():
all_benchmarks.update(model_metrics.keys())
all_benchmarks = sorted(list(all_benchmarks))
# Filter benchmarks if specified
if benchmarks:
all_benchmarks = [b for b in all_benchmarks if b in benchmarks]
# Group models by base name
model_groups = defaultdict(list)
for model in results.keys():
base_name = re.split(r'(?:checkpoint-|global_step)', model)[0].rstrip('-')
model_groups[base_name].append(model)
# Create plots for each model group
for base_name, models in model_groups.items():
if len(models) <= 1:
continue
# Sort checkpoints
models = sort_checkpoints(models)
# Extract checkpoint numbers for x-axis
checkpoints = []
for model in models:
if 'checkpoint-final' in model:
checkpoints.append('final')
else:
checkpoint_match = re.search(r'checkpoint-(\d+)', model)
if checkpoint_match:
checkpoints.append(checkpoint_match.group(1))
continue
global_step_match = re.search(r'global_step[_]?(\d+)', model)
if global_step_match:
checkpoints.append(f'step{global_step_match.group(1)}')
else:
checkpoints.append('unknown')
# Create figures
n_benchmarks = len(all_benchmarks) + 1 # +1 for average
n_cols = 3
n_rows = (n_benchmarks + n_cols - 1) // n_cols
# Create three separate figures with the same layout
for plot_type in ['acc_tokens', 'acc_keywords', 'tokens_keywords', 'acc_pass_acc']:
fig, axes = plt.subplots(n_rows, n_cols, figsize=(15, 5*n_rows))
fig.suptitle(f'Training Progress - {base_name}')
axes = axes.flatten()
# Plot average metrics first
avg_metrics = defaultdict(list)
for model in models:
metrics = results[model]
# 计算每个模型的平均值
model_acc = []
model_tokens = []
model_keywords = []
model_pass_acc = []
for benchmark in all_benchmarks:
if benchmark in metrics:
model_acc.append(metrics[benchmark].get('acc', 0))
model_tokens.append(metrics[benchmark].get('tokens', 0))
model_keywords.append(metrics[benchmark].get('keywords', 0))
model_pass_acc.append(metrics[benchmark].get('pass_acc', 0))
# 将每个模型的平均值添加到列表中
avg_metrics['acc'].append(sum(model_acc) / len(model_acc) if model_acc else 0)
avg_metrics['tokens'].append(sum(model_tokens) / len(model_tokens) if model_tokens else 0)
avg_metrics['keywords'].append(sum(model_keywords) / len(model_keywords) if model_keywords else 0)
avg_metrics['pass_acc'].append(sum(model_pass_acc) / len(model_pass_acc) if model_pass_acc else 0)
# Plot first subplot (average)
ax_twin = axes[0].twinx()
if plot_type == 'acc_tokens':
y1_data = avg_metrics['acc']
y2_data = avg_metrics['tokens']
y1_label, y2_label = 'Accuracy', 'Tokens'
y1_color, y2_color = '#1f77b4', '#ff7f0e'
elif plot_type == 'acc_keywords':
y1_data = avg_metrics['acc']
y2_data = avg_metrics['keywords']
y1_label, y2_label = 'Accuracy', 'Keywords'
y1_color, y2_color = '#1f77b4', '#2ca02c'
elif plot_type == 'acc_pass_acc':
y1_data = avg_metrics['acc']
y2_data = avg_metrics['pass_acc']
y1_label, y2_label = 'Accuracy', 'Pass Accuracy'
y1_color, y2_color = '#1f77b4', '#17becf'
else: # tokens_keywords
y1_data = avg_metrics['tokens']
y2_data = avg_metrics['keywords']
y1_label, y2_label = 'Tokens', 'Keywords'
y1_color, y2_color = '#ff7f0e', '#2ca02c'
line1 = axes[0].plot(range(len(checkpoints)), y1_data, marker='o', color=y1_color, label=y1_label)
line2 = ax_twin.plot(range(len(checkpoints)), y2_data, marker='s', color=y2_color, label=y2_label)
axes[0].set_title('Average Metrics')
axes[0].set_xlabel('Checkpoint')
axes[0].set_ylabel(y1_label, color=y1_color)
ax_twin.set_ylabel(y2_label, color=y2_color)
axes[0].set_xticks(range(len(checkpoints)))
axes[0].set_xticklabels(checkpoints, rotation=45)
axes[0].grid(True, alpha=0.3)
# Add value annotations
for i, (v1, v2) in enumerate(zip(y1_data, y2_data)):
axes[0].annotate(f'{v1:.1f}', (i, v1), textcoords="offset points",
xytext=(0,10), ha='center', color=y1_color, fontsize=8)
ax_twin.annotate(f'{v2:.2f}', (i, v2), textcoords="offset points",
xytext=(0,-15), ha='center', color=y2_color, fontsize=8)
lines = line1 + line2
labels = [l.get_label() for l in lines]
axes[0].legend(lines, labels, loc='upper left')
# Plot individual benchmarks
for i, benchmark in enumerate(all_benchmarks, start=1):
ax_twin = axes[i].twinx()
y1_values = []
y2_values = []
for model in models:
metrics = results[model].get(benchmark, {})
if plot_type == 'acc_tokens':
y1_values.append(metrics.get('acc', 0))
y2_values.append(metrics.get('tokens', 0))
elif plot_type == 'acc_keywords':
y1_values.append(metrics.get('acc', 0))
y2_values.append(metrics.get('keywords', 0))
elif plot_type == 'acc_pass_acc':
y1_values.append(metrics.get('acc', 0))
y2_values.append(metrics.get('pass_acc', 0))
else: # tokens_keywords
y1_values.append(metrics.get('tokens', 0))
y2_values.append(metrics.get('keywords', 0))
line1 = axes[i].plot(range(len(checkpoints)), y1_values, marker='o', color=y1_color, label=y1_label)
line2 = ax_twin.plot(range(len(checkpoints)), y2_values, marker='s', color=y2_color, label=y2_label)
axes[i].set_title(benchmark)
axes[i].set_xlabel('Checkpoint')
axes[i].set_ylabel(y1_label, color=y1_color)
ax_twin.set_ylabel(y2_label, color=y2_color)
axes[i].set_xticks(range(len(checkpoints)))
axes[i].set_xticklabels(checkpoints, rotation=45)
axes[i].grid(True, alpha=0.3)
for j, (v1, v2) in enumerate(zip(y1_values, y2_values)):
axes[i].annotate(f'{v1:.1f}', (j, v1), textcoords="offset points",
xytext=(0,10), ha='center', color=y1_color, fontsize=8)
ax_twin.annotate(f'{v2:.2f}', (j, v2), textcoords="offset points",
xytext=(0,-15), ha='center', color=y2_color, fontsize=8)
lines = line1 + line2
labels = [l.get_label() for l in lines]
axes[i].legend(lines, labels, loc='upper left')
# Remove empty subplots
for i in range(len(all_benchmarks) + 1, len(axes)):
fig.delaxes(axes[i])
# Adjust layout and save
fig.tight_layout()
output_filename = os.path.join(output_dir, f'{base_name}_{plot_type}.png')
if os.path.exists(output_filename):
try:
os.remove(output_filename)
except Exception as e:
print(f"Warning: Could not remove existing file {output_filename}: {e}")
try:
fig.savefig(output_filename)
print(f"Saved plot to: {output_filename}")
except Exception as e:
print(f"Error saving plot: {e}")
plt.close(fig)
# Create two additional plots for correct/wrong tokens
for base_name, models in model_groups.items():
if len(models) <= 1:
continue
# Sort checkpoints
models = sort_checkpoints(models)
# Extract checkpoint numbers for x-axis
checkpoints = []
for model in models:
if 'checkpoint-final' in model:
checkpoints.append('final')
else:
checkpoint_match = re.search(r'checkpoint-(\d+)', model)
if checkpoint_match:
checkpoints.append(checkpoint_match.group(1))
continue
global_step_match = re.search(r'global_step[_]?(\d+)', model)
if global_step_match:
checkpoints.append(f'step{global_step_match.group(1)}')
else:
checkpoints.append('unknown')
# Create figures for correct/wrong tokens
for plot_type in ['correct_tokens', 'wrong_tokens']:
fig, axes = plt.subplots(n_rows, n_cols, figsize=(15, 5*n_rows))
fig.suptitle(f'Training Progress - {base_name} - {"Correct" if plot_type == "correct_tokens" else "Wrong"} Answer Tokens')
axes = axes.flatten()
# Plot average metrics first
avg_metrics = defaultdict(list)
for model in models:
metrics = results[model]
model_acc = []
model_tokens = []
for benchmark in all_benchmarks:
if benchmark in metrics:
model_acc.append(metrics[benchmark].get('acc', 0))
model_tokens.append(metrics[benchmark].get(plot_type, 0))
avg_metrics['acc'].append(sum(model_acc) / len(model_acc) if model_acc else 0)
avg_metrics['tokens'].append(sum(model_tokens) / len(model_tokens) if model_tokens else 0)
# Plot first subplot (average)
ax_twin = axes[0].twinx()
line1 = axes[0].plot(range(len(checkpoints)), avg_metrics['acc'],
marker='o', color='#1f77b4', label='Accuracy')
line2 = ax_twin.plot(range(len(checkpoints)), avg_metrics['tokens'],
marker='s', color='#ff7f0e',
label=f'{"Correct" if plot_type == "correct_tokens" else "Wrong"} Tokens')
axes[0].set_title('Average Metrics')
axes[0].set_xlabel('Checkpoint')
axes[0].set_ylabel('Accuracy', color='#1f77b4')
ax_twin.set_ylabel('Tokens', color='#ff7f0e')
axes[0].set_xticks(range(len(checkpoints)))
axes[0].set_xticklabels(checkpoints, rotation=45)
axes[0].grid(True, alpha=0.3)
# Add value annotations
for i, (v1, v2) in enumerate(zip(avg_metrics['acc'], avg_metrics['tokens'])):
axes[0].annotate(f'{v1:.1f}', (i, v1), textcoords="offset points",
xytext=(0,10), ha='center', color='#1f77b4', fontsize=8)
ax_twin.annotate(f'{v2:.1f}', (i, v2), textcoords="offset points",
xytext=(0,-15), ha='center', color='#ff7f0e', fontsize=8)
lines = line1 + line2
labels = [l.get_label() for l in lines]
axes[0].legend(lines, labels, loc='upper left')
# Plot individual benchmarks
for i, benchmark in enumerate(all_benchmarks, start=1):
ax_twin = axes[i].twinx()
acc_values = []
token_values = []
for model in models:
metrics = results[model].get(benchmark, {})
acc_values.append(metrics.get('acc', 0))
token_values.append(metrics.get(plot_type, 0))
line1 = axes[i].plot(range(len(checkpoints)), acc_values,
marker='o', color='#1f77b4', label='Accuracy')
line2 = ax_twin.plot(range(len(checkpoints)), token_values,
marker='s', color='#ff7f0e',
label=f'{"Correct" if plot_type == "correct_tokens" else "Wrong"} Tokens')
axes[i].set_title(benchmark)
axes[i].set_xlabel('Checkpoint')
axes[i].set_ylabel('Accuracy', color='#1f77b4')
ax_twin.set_ylabel('Tokens', color='#ff7f0e')
axes[i].set_xticks(range(len(checkpoints)))
axes[i].set_xticklabels(checkpoints, rotation=45)
axes[i].grid(True, alpha=0.3)
for j, (v1, v2) in enumerate(zip(acc_values, token_values)):
axes[i].annotate(f'{v1:.1f}', (j, v1), textcoords="offset points",
xytext=(0,10), ha='center', color='#1f77b4', fontsize=8)
ax_twin.annotate(f'{v2:.1f}', (j, v2), textcoords="offset points",
xytext=(0,-15), ha='center', color='#ff7f0e', fontsize=8)
lines = line1 + line2
labels = [l.get_label() for l in lines]
axes[i].legend(lines, labels, loc='upper left')
# Remove empty subplots
for i in range(len(all_benchmarks) + 1, len(axes)):
fig.delaxes(axes[i])
# Adjust layout and save
fig.tight_layout()
output_filename = os.path.join(output_dir, f'{base_name}_{plot_type}.png')
if os.path.exists(output_filename):
try:
os.remove(output_filename)
except Exception as e:
print(f"Warning: Could not remove existing file {output_filename}: {e}")
try:
fig.savefig(output_filename)
print(f"Saved plot to: {output_filename}")
except Exception as e:
print(f"Error saving plot: {e}")
plt.close(fig)
# Create figures for correct/wrong tokens and clip ratio relationships
for base_name, models in model_groups.items():
if len(models) <= 1:
continue
models = sort_checkpoints(models)
# Extract checkpoint numbers for x-axis
# Create figures for clip ratio and stop tokens relationships
for plot_type in ['clip_ratio', 'avg_stop_tokens']:
fig, axes = plt.subplots(n_rows, n_cols, figsize=(15, 5*n_rows))
fig.suptitle(f'Training Progress - {base_name} - {plot_type.replace("_", " ").title()}')
axes = axes.flatten()
# Plot average metrics first
avg_metrics = defaultdict(list)
for model in models:
metrics = results[model]
model_acc = []
model_type = []
for benchmark in all_benchmarks:
if benchmark in metrics:
model_acc.append(metrics[benchmark].get('acc', 0))
if plot_type == 'clip_ratio':
model_type.append(metrics[benchmark].get('clip_ratio', 0))
else: # stop_tokens
model_type.append(metrics[benchmark].get('avg_stop_tokens', 0))
avg_metrics['acc'].append(sum(model_acc) / len(model_acc) if model_acc else 0)
avg_metrics[plot_type].append(sum(model_type) / len(model_type) if model_type else 0)
# Plot first subplot (average)
ax_twin = axes[0].twinx()
if plot_type == 'clip_ratio':
y1_data = avg_metrics['acc']
y2_data = avg_metrics['clip_ratio']
y1_label, y2_label = 'Accuracy', 'Clip Ratio'
y1_color, y2_color = '#1f77b4', '#d62728' # Red for clip ratio
else: # stop_tokens
y1_data = avg_metrics['acc']
y2_data = avg_metrics['avg_stop_tokens']
y1_label, y2_label = 'Accuracy', 'Avg Stop Tokens'
y1_color, y2_color = '#1f77b4', '#9467bd' # Purple for stop tokens
line1 = axes[0].plot(range(len(checkpoints)), y1_data, marker='o', color=y1_color, label=y1_label)
line2 = ax_twin.plot(range(len(checkpoints)), y2_data, marker='s', color=y2_color, label=y2_label)
axes[0].set_title('Average Metrics')
axes[0].set_xlabel('Checkpoint')
axes[0].set_ylabel(y1_label, color=y1_color)
ax_twin.set_ylabel(y2_label, color=y2_color)
axes[0].set_xticks(range(len(checkpoints)))
axes[0].set_xticklabels(checkpoints, rotation=45)
axes[0].grid(True, alpha=0.3)
# Add value annotations
for i, (v1, v2) in enumerate(zip(y1_data, y2_data)):
axes[0].annotate(f'{v1:.1f}', (i, v1), textcoords="offset points",
xytext=(0,10), ha='center', color=y1_color, fontsize=8)
ax_twin.annotate(f'{v2:.2f}', (i, v2), textcoords="offset points",
xytext=(0,-15), ha='center', color=y2_color, fontsize=8)
lines = line1 + line2
labels = [l.get_label() for l in lines]
axes[0].legend(lines, labels, loc='upper left')
# Plot individual benchmarks
for i, benchmark in enumerate(all_benchmarks, start=1):
ax_twin = axes[i].twinx()
acc_values = []
type_values = []
for model in models:
metrics = results[model].get(benchmark, {})
acc_values.append(metrics.get('acc', 0))
type_values.append(metrics.get(plot_type, 0))
line1 = axes[i].plot(range(len(checkpoints)), acc_values, marker='o', color=y1_color, label='Accuracy')
line2 = ax_twin.plot(range(len(checkpoints)), type_values, marker='s', color=y2_color, label=y2_label)
axes[i].set_title(benchmark)
axes[i].set_xlabel('Checkpoint')
axes[i].set_ylabel('Accuracy', color=y1_color)
ax_twin.set_ylabel(y2_label, color=y2_color)
axes[i].set_xticks(range(len(checkpoints)))
axes[i].set_xticklabels(checkpoints, rotation=45)
axes[i].grid(True, alpha=0.3)
for j, (v1, v2) in enumerate(zip(acc_values, type_values)):
axes[i].annotate(f'{v1:.1f}', (j, v1), textcoords="offset points",
xytext=(0,10), ha='center', color=y1_color, fontsize=8)
ax_twin.annotate(f'{v2:.2f}', (j, v2), textcoords="offset points",
xytext=(0,-15), ha='center', color=y2_color, fontsize=8)
lines = line1 + line2
labels = [l.get_label() for l in lines]
axes[i].legend(lines, labels, loc='upper left')
# Remove empty subplots
for i in range(len(all_benchmarks) + 1, len(axes)):
fig.delaxes(axes[i])
# Adjust layout and save
fig.tight_layout()
output_filename = os.path.join(output_dir, f'{base_name}_{plot_type}.png')
if os.path.exists(output_filename):
try:
os.remove(output_filename)
except Exception as e:
print(f"Warning: Could not remove existing file {output_filename}: {e}")
try:
fig.savefig(output_filename)
print(f"Saved plot to: {output_filename}")
except Exception as e:
print(f"Error saving plot: {e}")
plt.close(fig)
#Create figure for box_ratio vs tokens plot
fig, axes = plt.subplots(n_rows, n_cols, figsize=(15, 5*n_rows))
fig.suptitle(f'Training Progress - {base_name} (Box Ratio and Token Length)')
axes = axes.flatten()
avg_metrics = defaultdict(list)
for model in models:
metrics = results[model]
model_box_ratio = []
model_tokens = []
for benchmark in all_benchmarks:
if benchmark in metrics:
model_box_ratio.append(metrics[benchmark].get('box_ratio', 0))
model_tokens.append(metrics[benchmark].get('tokens', 0))
avg_metrics['box_ratio'].append(sum(model_box_ratio) / len(model_box_ratio) if model_box_ratio else 0)
avg_metrics['tokens'].append(sum(model_tokens) / len(model_tokens) if model_tokens else 0)
# Plot the combined box_ratio vs token length
ax = axes[0]
ax.set_title('Average Box Ratio and Token Length')
ax.set_xlabel('Checkpoint')
ax.set_ylabel('Box Ratio and Tokens')
line1 = ax.plot(range(len(checkpoints)), avg_metrics['box_ratio'], marker='o', color='#1f77b4', label='Box Ratio')
ax_twin = ax.twinx()
line2 = ax_twin.plot(range(len(checkpoints)), avg_metrics['tokens'], marker='s', color='#ff7f0e', label='Token Length')
ax.set_xticks(range(len(checkpoints)))
ax.set_xticklabels(checkpoints, rotation=45)
ax.grid(True, alpha=0.3)
# Add value annotations
for i, (v1, v2) in enumerate(zip(avg_metrics['box_ratio'], avg_metrics['tokens'])):
ax.annotate(f'{v1:.2f}', (i, v1), textcoords="offset points", xytext=(0,10), ha='center', color='#1f77b4', fontsize=8)
ax_twin.annotate(f'{v2:.1f}', (i, v2), textcoords="offset points", xytext=(0,-15), ha='center', color='#ff7f0e', fontsize=8)
lines = line1 + line2
labels = [l.get_label() for l in lines]
ax.legend(lines, labels, loc='upper left')
# Plot individual benchmarks
for i, benchmark in enumerate(all_benchmarks, start=1):
ax = axes[i]
ax.set_title(benchmark)
ax.set_xlabel('Checkpoint')
ax.set_ylabel('Box Ratio and Tokens')
box_ratio_values = []
token_values = []
for model in models:
metrics = results[model].get(benchmark, {})
box_ratio_values.append(metrics.get('box_ratio', 0))
token_values.append(metrics.get('tokens', 0))
line1 = ax.plot(range(len(checkpoints)), box_ratio_values, marker='o', color='#1f77b4', label='Box Ratio')
ax_twin = ax.twinx()
line2 = ax_twin.plot(range(len(checkpoints)), token_values, marker='s', color='#ff7f0e', label='Token Length')
ax.set_xticks(range(len(checkpoints)))
ax.set_xticklabels(checkpoints, rotation=45)
ax.grid(True, alpha=0.3)
# Add value annotations
for j, (v1, v2) in enumerate(zip(box_ratio_values, token_values)):
ax.annotate(f'{v1:.2f}', (j, v1), textcoords="offset points", xytext=(0,10), ha='center', color='#1f77b4', fontsize=8)
ax_twin.annotate(f'{v2:.1f}', (j, v2), textcoords="offset points", xytext=(0,-15), ha='center', color='#ff7f0e', fontsize=8)
lines = line1 + line2
labels = [l.get_label() for l in lines]
ax.legend(lines, labels, loc='upper left')
# Remove empty subplots
for i in range(len(all_benchmarks) + 1, len(axes)):
fig.delaxes(axes[i])
fig.tight_layout()
output_filename = os.path.join(output_dir, f'{base_name}_box_ratio_and_token_length.png')
if os.path.exists(output_filename):
try:
os.remove(output_filename)
except Exception as e:
print(f"Warning: Could not remove existing file {output_filename}: {e}")
try:
fig.savefig(output_filename)
print(f"Saved plot to: {output_filename}")
except Exception as e:
print(f"Error saving plot: {e}")
plt.close(fig)
# Create the plot for Repeat Ratio vs Tokens
fig, axes = plt.subplots(n_rows, n_cols, figsize=(15, 5*n_rows))
fig.suptitle(f'Training Progress - {base_name} (Repeat Ratio and Token Length)')
axes = axes.flatten()
avg_metrics = defaultdict(list)
for model in models:
metrics = results[model]
model_repeat_ratio = []
model_tokens = []
for benchmark in all_benchmarks:
if benchmark in metrics:
model_repeat_ratio.append(metrics[benchmark].get('repeat_ratio', 0))
model_tokens.append(metrics[benchmark].get('tokens', 0))
avg_metrics['repeat_ratio'].append(sum(model_repeat_ratio) / len(model_repeat_ratio) if model_repeat_ratio else 0)
avg_metrics['tokens'].append(sum(model_tokens) / len(model_tokens) if model_tokens else 0)
# Plot the combined repeat_ratio vs token length
ax = axes[0]
ax.set_title('Average Repeat Ratio and Token Length')
ax.set_xlabel('Checkpoint')
ax.set_ylabel('Repeat Ratio and Tokens')
line1 = ax.plot(range(len(checkpoints)), avg_metrics['repeat_ratio'], marker='o', color='#9467bd', label='Repeat Ratio')
ax_twin = ax.twinx()
line2 = ax_twin.plot(range(len(checkpoints)), avg_metrics['tokens'], marker='s', color='#ff7f0e', label='Token Length')
ax.set_xticks(range(len(checkpoints)))
ax.set_xticklabels(checkpoints, rotation=45)
ax.grid(True, alpha=0.3)
# Add value annotations
for i, (v1, v2) in enumerate(zip(avg_metrics['repeat_ratio'], avg_metrics['tokens'])):
ax.annotate(f'{v1:.2f}', (i, v1), textcoords="offset points", xytext=(0,10), ha='center', color='#9467bd', fontsize=8)
ax_twin.annotate(f'{v2:.1f}', (i, v2), textcoords="offset points", xytext=(0,-15), ha='center', color='#ff7f0e', fontsize=8)
lines = line1 + line2
labels = [l.get_label() for l in lines]
ax.legend(lines, labels, loc='upper left')
# Plot individual benchmarks
for i, benchmark in enumerate(all_benchmarks, start=1):
ax = axes[i]
ax.set_title(benchmark)
ax.set_xlabel('Checkpoint')
ax.set_ylabel('Repeat Ratio and Tokens')
repeat_ratio_values = []
token_values = []
for model in models:
metrics = results[model].get(benchmark, {})
repeat_ratio_values.append(metrics.get('repeat_ratio', 0))
token_values.append(metrics.get('tokens', 0))
line1 = ax.plot(range(len(checkpoints)), repeat_ratio_values, marker='o', color='#9467bd', label='Repeat Ratio')
ax_twin = ax.twinx()
line2 = ax_twin.plot(range(len(checkpoints)), token_values, marker='s', color='#ff7f0e', label='Token Length')
ax.set_xticks(range(len(checkpoints)))
ax.set_xticklabels(checkpoints, rotation=45)
ax.grid(True, alpha=0.3)
# Add value annotations
for j, (v1, v2) in enumerate(zip(repeat_ratio_values, token_values)):
ax.annotate(f'{v1:.2f}', (j, v1), textcoords="offset points", xytext=(0,10), ha='center', color='#9467bd', fontsize=8)
ax_twin.annotate(f'{v2:.1f}', (j, v2), textcoords="offset points", xytext=(0,-15), ha='center', color='#ff7f0e', fontsize=8)
lines = line1 + line2
labels = [l.get_label() for l in lines]
ax.legend(lines, labels, loc='upper left')
# Remove empty subplots
for i in range(len(all_benchmarks) + 1, len(axes)):
fig.delaxes(axes[i])
fig.tight_layout()
output_filename = os.path.join(output_dir, f'{base_name}_repeat_ratio_and_token_length.png')
if os.path.exists(output_filename):
try:
os.remove(output_filename)
except Exception as e:
print(f"Warning: Could not remove existing file {output_filename}: {e}")
try:
fig.savefig(output_filename)
print(f"Saved plot to: {output_filename}")
except Exception as e:
print(f"Error saving plot: {e}")
plt.close(fig)
def main(args):
base_dir = args.base_dir
model_name = args.model_name
print("model_name:", model_name)
# Parse benchmarks if specified
benchmarks = None
if args.benchmarks:
benchmarks = set(args.benchmarks.split(','))
# Collect results
print("Collecting results...")
results = collect_results(base_dir, model_name, args.num_threads, args.temperature)
# Filter results if benchmarks specified
if benchmarks:
filtered_results = defaultdict(lambda: defaultdict(dict))
for model, model_results in results.items():
for benchmark, metrics in model_results.items():
if benchmark in benchmarks:
filtered_results[model][benchmark] = metrics
results = filtered_results
# Create summary DataFrame
print("\nCreating summary...")
df = create_summary(results)
print("\nResults summary:")
print(df)
# collect all accs and print (end in _acc)
all_accs = {}
for model, model_results in results.items():
for benchmark, metrics in model_results.items():
for key, value in metrics.items():
if key.endswith('_acc'):
all_accs.setdefault(model, {})[benchmark] = value
print("\nAll accuracies:")
for model, model_results in all_accs.items():
print(f"{model}: {model_results}")
# Save to CSV
output_file = args.output_path
df.to_csv(output_file, index=False)
print(f"\nResults saved to {output_file}")
# Plot training progress
print("\nNot running: Creating training progress plots...")
# plot_training_progress(results, args.plot_dir, benchmarks)
print("\nNot syncing to wandb: Commented out")
# Sync to wandb if enabled
# if args.use_wandb:
# print("\nSyncing to wandb...")
# if args.wandb_api_key:
# wandb.login(key=args.wandb_api_key)
# sync_to_wandb(args, results, args.wandb_project, df, args.plot_dir, args.output_path)
# print("Wandb sync completed!")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--base_dir", type=str, default="")
parser.add_argument("--model_name", type=str, default="Qwen-math-7B-S100-qwq-fs-7k8-8192len-5e-6-rope10-bsz64")
parser.add_argument("--output_path", type=str, default=None)
parser.add_argument("--wandb_run_name", type=str, default=None)
parser.add_argument("--plot_dir", type=str, default=None)
parser.add_argument("--wandb_project", type=str, default="math-eval-results")
parser.add_argument("--wandb_api_key", type=str, default="1234567890")
parser.add_argument("--use_wandb", action="store_true")
parser.add_argument("--num_threads", type=int, default=8)
parser.add_argument("--benchmarks", type=str,
default="gsm8k,math,minerva_math,olympiadbench,college_math,aime24,amc23",
help="Comma-separated list of benchmarks to include")
parser.add_argument("--temperature", type=float, default=None)
args = parser.parse_args()
if args.temperature == -1:
args.temperature = None
if args.output_path is None:
args.output_path = os.path.join(args.base_dir, "eval_results.csv")
if args.plot_dir is None:
args.plot_dir = os.path.join(args.base_dir, "plots")
if not os.path.exists(args.plot_dir):
os.makedirs(args.plot_dir, exist_ok=True)
main(args)
|