|
--- |
|
tags: |
|
- spacy |
|
- token-classification |
|
language: |
|
- en |
|
model-index: |
|
- name: en_kyc_nerre |
|
results: |
|
- task: |
|
name: NER |
|
type: token-classification |
|
metrics: |
|
- name: NER Precision |
|
type: precision |
|
value: 0.6862745098 |
|
- name: NER Recall |
|
type: recall |
|
value: 0.7954545455 |
|
- name: NER F Score |
|
type: f_score |
|
value: 0.7368421053 |
|
--- |
|
| Feature | Description | Note |
|
| --- | --- | --- | |
|
| **Name** | `en_kyc_nerre` || |
|
| **Version** | `0.0.0` | test run, official version will start from 1.xx.xx| |
|
| **spaCy** | `>=3.6.1,<3.7.0` || |
|
| **Default Pipeline** | `transformer`, `ner` || |
|
| **Components** | `transformer`, `ner` || |
|
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) || |
|
| **Sources** | n/a || |
|
| **License** | n/a || |
|
| **Author** | hjiangAnthony || |
|
|
|
### Purpose |
|
Identifying PERSON, CRIME, and PROCECUTION entities; supporting relation extraction for the next step |
|
|
|
### Label Scheme |
|
|
|
<details> |
|
|
|
<summary>View label scheme (3 labels for 1 components)</summary> |
|
|
|
| Component | Labels | |
|
| --- | --- | |
|
| **`ner`** | `CRIME`, `PERSON`, `PROCECUTION` | |
|
|
|
</details> |
|
|
|
### Accuracy |
|
|
|
| Type | Score | |
|
| --- | --- | |
|
| `ENTS_F` | 73.68 | |
|
| `ENTS_P` | 68.63 | |
|
| `ENTS_R` | 79.55 | |
|
| `TRANSFORMER_LOSS` | 12977.28 | |
|
| `NER_LOSS` | 94024.87 | |