File size: 1,289 Bytes
f96c435 fe35bd5 f96c435 3547a31 f96c435 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
---
tags:
- spacy
- token-classification
language:
- en
model-index:
- name: en_kyc_nerre
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.6862745098
- name: NER Recall
type: recall
value: 0.7954545455
- name: NER F Score
type: f_score
value: 0.7368421053
---
| Feature | Description | Note
| --- | --- | --- |
| **Name** | `en_kyc_nerre` ||
| **Version** | `0.0.0` | test run, official version will start from 1.xx.xx|
| **spaCy** | `>=3.6.1,<3.7.0` ||
| **Default Pipeline** | `transformer`, `ner` ||
| **Components** | `transformer`, `ner` ||
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) ||
| **Sources** | n/a ||
| **License** | n/a ||
| **Author** | hjiangAnthony ||
### Purpose
Identifying PERSON, CRIME, and PROCECUTION entities; supporting relation extraction for the next step
### Label Scheme
<details>
<summary>View label scheme (3 labels for 1 components)</summary>
| Component | Labels |
| --- | --- |
| **`ner`** | `CRIME`, `PERSON`, `PROCECUTION` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `ENTS_F` | 73.68 |
| `ENTS_P` | 68.63 |
| `ENTS_R` | 79.55 |
| `TRANSFORMER_LOSS` | 12977.28 |
| `NER_LOSS` | 94024.87 | |