File size: 1,542 Bytes
717d2f2 0ce30a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
---
library_name: hivex
original_train_name: WindFarmControl_pattern_3_task_1_run_id_1_train
tags:
- hivex
- hivex-wind-farm-control
- reinforcement-learning
- multi-agent-reinforcement-learning
model-index:
- name: hivex-WFC-PPO-baseline-task-1-pattern-3
results:
- task:
type: sub-task
name: avoid_damage
task-id: 1
pattern-id: 3
dataset:
name: hivex-wind-farm-control
type: hivex-wind-farm-control
metrics:
- type: cumulative_reward
value: 4824.08486328125 +/- 32.716714052830234
name: Cumulative Reward
verified: true
- type: avoid_damage_reward
value: 4824.054873046875 +/- 34.55972201083332
name: Avoid Damage Reward
verified: true
- type: individual_performance
value: 0.0 +/- 0.0
name: Individual Performance
verified: true
---
This model serves as the baseline for the **Wind Farm Control** environment, trained and tested on task <code>1</code> with pattern <code>3</code> using the Proximal Policy Optimization (PPO) algorithm.<br>
<br>
Environment: **Wind Farm Control**<br>
Task: <code>1</code><br>
Pattern: <code>3</code><br>
Algorithm: <code>PPO</code><br>
Episode Length: <code>5000</code><br>
Training <code>max_steps</code>: <code>8000000</code><br>
Testing <code>max_steps</code>: <code>8000000</code><br>
<br>
Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>
Download the [Environment](https://github.com/hivex-research/hivex-environments)
[hivex-paper]: https://arxiv.org/abs/2501.04180 |