File size: 1,435 Bytes
3f7d124 5ef961e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
---
library_name: hivex
original_train_name: OceanPlasticCollection_task_2_run_id_1_train
tags:
- hivex
- hivex-ocean-plastic-collection
- reinforcement-learning
- multi-agent-reinforcement-learning
model-index:
- name: hivex-OPC-PPO-baseline-task-2
results:
- task:
type: sub-task
name: group_up
task-id: 2
dataset:
name: hivex-ocean-plastic-collection
type: hivex-ocean-plastic-collection
metrics:
- type: cumulative_reward
value: 868.6791931152344 +/- 177.8582676854445
name: "Cumulative Reward"
verified: true
- type: global_reward
value: 294.7176452636719 +/- 58.7408861442478
name: "Global Reward"
verified: true
- type: local_reward
value: 165.2141372680664 +/- 20.43658256777414
name: "Local Reward"
verified: true
---
This model serves as the baseline for the **Ocean Plastic Collection** environment, trained and tested on task <code>2</code> using the Proximal Policy Optimization (PPO) algorithm.<br>
<br>
Environment: **Ocean Plastic Collection**<br>
Task: <code>2</code><br>
Algorithm: <code>PPO</code><br>
Episode Length: <code>5000</code><br>
Training <code>max_steps</code>: <code>3000000</code><br>
Testing <code>max_steps</code>: <code>150000</code><br>
<br>
Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>
Download the [Environment](https://github.com/hivex-research/hivex-environments) |