File size: 6,207 Bytes
9d452e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e8f6f8
 
9d452e1
 
 
 
 
 
 
 
3e8f6f8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from typing import Dict, List, Any
import sys, os, re
from tqdm import tqdm

import torch
from transformers import AutoModelForSeq2SeqLM, BitsAndBytesConfig
from IndicTransTokenizer.utils import preprocess_batch, postprocess_batch
from IndicTransTokenizer.tokenizer import IndicTransTokenizer


class EndpointHandler():
    def __init__(self, direction = "en-indic", quantization = ""):
        self.model_name = "ai4bharat/indictrans2-en-indic-1B"

        self.utterance_pattern = re.compile(r"^\d+$")
        self.timestamp_pattern = re.compile(r"(\d+:\d+:\d+,\d+)\s*-->\s*(\d+:\d+:\d+,\d+)")

        self.BATCH_SIZE = 16
        self.DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

        self.model = None
        self.tokenizer = None

        if quantization == "4-bit":
            qconfig = BitsAndBytesConfig(
                load_in_4bit=True,
                bnb_4bit_use_double_quant=True,
                bnb_4bit_compute_dtype=torch.bfloat16,
            )
        elif quantization == "8-bit":
            qconfig = BitsAndBytesConfig(
                load_in_8bit=True,
                bnb_8bit_use_double_quant=True,
                bnb_8bit_compute_dtype=torch.bfloat16,
            )
        else:
            qconfig = None

        self.tokenizer = IndicTransTokenizer(direction=direction)
        self.model = AutoModelForSeq2SeqLM.from_pretrained(
            self.model_name,
            trust_remote_code=True,
            low_cpu_mem_usage=True,
            quantization_config=qconfig
        )

        if qconfig==None:
            self.model = self.model.to(self.DEVICE)
            self.model.half()

        self.model.eval()


    def batch_translate(self, input_sentences, src_lang, tgt_lang):
        translations = []
        for i in range(0, len(input_sentences), self.BATCH_SIZE):
            batch = input_sentences[i : i + self.BATCH_SIZE]

            # Preprocess the batch and extract entity mappings
            batch, entity_map = preprocess_batch(
                batch, src_lang=src_lang, tgt_lang=tgt_lang
            )

            # Tokenize the batch and generate input encodings
            inputs = self.tokenizer(
                batch,
                src=True,
                truncation=True,
                padding="longest",
                return_tensors="pt",
                return_attention_mask=True,
            ).to(self.DEVICE)

            # Generate translations using the model
            with torch.no_grad():
                generated_tokens = self.model.generate(
                    **inputs,
                    use_cache=True,
                    min_length=0,
                    max_length=256,
                    num_beams=5,
                    num_return_sequences=1,
                )

            # Decode the generated tokens into text
            generated_tokens = self.tokenizer.batch_decode(
                generated_tokens.detach().cpu().tolist(), src=False
            )

            # Postprocess the translations, including entity replacement
            translations += postprocess_batch(
                generated_tokens, lang=tgt_lang, placeholder_entity_map=entity_map
            )

            del inputs
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

        return translations


    def read_srt(self, srt_path):
        data = []
        with open(srt_path, 'r', encoding='utf-8') as fp:
            utterance_ind = ""
            start_end = ""
            text = ""
            for ind, line in enumerate(fp.readlines()):
                line = line.strip()
                if re.search(self.utterance_pattern, line) is not None:
                    utterance_ind = line
                elif re.search(self.timestamp_pattern, line) is not None:
                    start_end = line
                else:
                    text += line

                if utterance_ind!='' and start_end!='' and text!='':
                    data.append({'utterance_ind': utterance_ind, 'start_end': start_end, 'text': text})
                    utterance_ind = ''
                    start_end = ''
                    text = ''

        return data

    def test(self, inputs) -> List[Dict[str, Any]]:
        """
       data args:
            inputs (:obj: (transcript_path : 'str', src_lang : 'str', tgt_lang : 'str')
            kwargs
      Return:
            A :obj:`list` | `dict`: will be serialized and returned
        """

        src_lang = inputs["src_lang"]
        tgt_lang = inputs["tgt_lang"]
        transcript_path = inputs["transcript_path"]

        output_translations = []
        if self.model is not None:
            transcriptions = self.read_srt(transcript_path)
            trans_sents = [entry['text'] for entry in transcriptions]
            indic_translations = self.batch_translate(trans_sents, src_lang, tgt_lang)

            for i in tqdm(range(len(transcriptions))):
                entry = transcriptions[i]
                entry['text'] = indic_translations[i]
                output_translations.append(entry)

            return output_translations
        else:
            return []

    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        """
       data args:
            inputs (:obj: (transcript_path : 'str', src_lang : 'str', tgt_lang : 'str')
            kwargs
      Return:
            A :obj:`list` | `dict`: will be serialized and returned
        """

        inputs = data.pop("inputs",data)

        src_lang = inputs["src_lang"]
        tgt_lang = inputs["tgt_lang"]
        transcript_path = inputs["transcript_path"]

        output_translations = []
        if self.model is not None:
            transcriptions = self.read_srt(transcript_path)
            trans_sents = [entry['text'] for entry in transcriptions]
            indic_translations = self.batch_translate(trans_sents, src_lang, tgt_lang)

            for i in tqdm(range(len(transcriptions))):
                entry = transcriptions[i]
                entry['text'] = indic_translations[i]
                output_translations.append(entry)

            return output_translations
        else:
            return []