File size: 4,161 Bytes
9d452e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import sys
import torch
from transformers import AutoModelForSeq2SeqLM, BitsAndBytesConfig
from IndicTransTokenizer.utils import preprocess_batch, postprocess_batch
from IndicTransTokenizer.tokenizer import IndicTransTokenizer
en_indic_ckpt_dir = "ai4bharat/indictrans2-en-indic-1B"
BATCH_SIZE = 16
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
if len(sys.argv)>1:
quantization = sys.argv[1]
else:
quantization = ""
def initialize_model_and_tokenizer(ckpt_dir, direction, quantization):
if quantization == "4-bit":
qconfig = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16,
)
elif quantization == "8-bit":
qconfig = BitsAndBytesConfig(
load_in_8bit=True,
bnb_8bit_use_double_quant=True,
bnb_8bit_compute_dtype=torch.bfloat16,
)
else:
qconfig = None
tokenizer = IndicTransTokenizer(direction=direction)
model = AutoModelForSeq2SeqLM.from_pretrained(
ckpt_dir,
trust_remote_code=True,
low_cpu_mem_usage=True,
quantization_config=qconfig
)
if qconfig==None:
model = model.to(DEVICE)
model.half()
model.eval()
return tokenizer, model
def batch_translate(input_sentences, src_lang, tgt_lang, model, tokenizer):
translations = []
for i in range(0, len(input_sentences), BATCH_SIZE):
batch = input_sentences[i : i + BATCH_SIZE]
# Preprocess the batch and extract entity mappings
batch, entity_map = preprocess_batch(
batch, src_lang=src_lang, tgt_lang=tgt_lang
)
# Tokenize the batch and generate input encodings
inputs = tokenizer(
batch,
src=True,
truncation=True,
padding="longest",
return_tensors="pt",
return_attention_mask=True,
).to(DEVICE)
# Generate translations using the model
with torch.no_grad():
generated_tokens = model.generate(
**inputs,
use_cache=True,
min_length=0,
max_length=256,
num_beams=5,
num_return_sequences=1,
)
# Decode the generated tokens into text
generated_tokens = tokenizer.batch_decode(
generated_tokens.detach().cpu().tolist(), src=False
)
# Postprocess the translations, including entity replacement
translations += postprocess_batch(
generated_tokens, lang=tgt_lang, placeholder_entity_map=entity_map
)
del inputs
torch.cuda.empty_cache()
return translations
en_indic_tokenizer, en_indic_model = initialize_model_and_tokenizer(
en_indic_ckpt_dir, "en-indic", quantization
)
# ---------------------------------------------------------------------------
# English to Hindi
# ---------------------------------------------------------------------------
en_sents = [
"When I was young, I used to go to the park every day.",
"He has many old books, which he inherited from his ancestors.",
"I can't figure out how to solve my problem.",
"She is very hardworking and intelligent, which is why she got all the good marks.",
"We watched a new movie last week, which was very inspiring.",
"If you had met me at that time, we would have gone out to eat.",
"She went to the market with her sister to buy a new sari.",
"Raj told me that he is going to his grandmother's house next month.",
"All the kids were having fun at the party and were eating lots of sweets.",
"My friend has invited me to his birthday party, and I will give him a gift.",
]
src_lang, tgt_lang = "eng_Latn", "hin_Deva"
hi_translations = batch_translate(
en_sents, src_lang, tgt_lang, en_indic_model, en_indic_tokenizer
)
print(f"\n{src_lang} - {tgt_lang}")
for input_sentence, translation in zip(en_sents, hi_translations):
print(f"{src_lang}: {input_sentence}")
print(f"{tgt_lang}: {translation}")
|