File size: 13,346 Bytes
c7c7f05
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a88b296eb00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a88b296eb90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a88b296ec20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a88b296ecb0>", "_build": "<function ActorCriticPolicy._build at 0x7a88b296ed40>", "forward": "<function ActorCriticPolicy.forward at 0x7a88b296edd0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a88b296ee60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a88b296eef0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a88b296ef80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a88b296f010>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a88b296f0a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a88b296f130>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a88b296abc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1717763764969312042, "learning_rate": 0.0, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPVtr2FU9O7EuICPsfyDT2RJgQ9Al5LugAAgD8AAIA/WrWgvY9GM7qPZKa7ZOgVOZZAYruICzI6AAAAAAAAgD/zLLs9A+0XvIJkkTtq75I8zO6DPRP9c70AAIA/AAAAAICQQT5b9J68Y1X9Oi7nO7kYcwm+HDYhugAAgD8AAIA/WrogPmLVsz4PF8m+80qMvps1/rza1lO8AAAAAAAAAAB6VhI+pHd7u36fYTiTqG+1HH+WvFgBg7cAAIA/AACAPzo0jz4/fCo+ho+QvqEkS74Rv0G6VKyCvAAAAAAAAAAAZj4Wvo1bLz+qqPA7HLSpvoNpg72Ew4E9AAAAAAAAAADtGGM+iPv2vMgsYbuRXP45F+ZavmTvljoAAIA/AACAPxqWJL2HVVo/e4tWvaB1677kZJC8pfJ/vQAAAAAAAAAAQCSuvV6jpj9a3uG+CQrkvnYcYr2rnc29AAAAAAAAAACaPTq9LoSCvHIQOD4CNvC9RiyevdAvC78AAIA/AACAPw27ub00ykc/6PzlvCXazb7Q/IG9HdOBPAAAAAAAAAAAs3xKva6RrLqP9bO4YLiUs43sz7loQM43AACAPwAAgD+Noqi97budP0DAkL5mBAm/SjGSvU3T770AAAAAAAAAAGZD7rzS5VU+4zAEvcFtXb6HcmW9a3KOPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVGgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHLYwvHtF8aMAWyUTQkBjAF0lEdAkzFJLZi/f3V9lChoBkdAcH3uFpPAPGgHTUABaAhHQJMyD544ZMt1fZQoaAZHQHC6wd4mkWRoB00XAWgIR0CTMxjkdV/+dX2UKGgGR0BHdB2fTTfBaAdLqWgIR0CTM1XCTEBKdX2UKGgGR0BviNlEqlP8aAdL+mgIR0CTM7Fpfx+bdX2UKGgGR0Bx1kysS00FaAdNZAFoCEdAkzPKPsAvMHV9lChoBkdAcLHSFXaJymgHS+ZoCEdAkzUL3bmEG3V9lChoBkdAcPiAPNFBp2gHTSIBaAhHQJM1DDBMzuZ1fZQoaAZHQEnz433pOetoB0u1aAhHQJM1NgLJCBx1fZQoaAZHQHFSzcdo371oB00fAWgIR0CTNazshPj5dX2UKGgGR0Bu8xng5zYFaAdNNQFoCEdAkzW98E3bVXV9lChoBkdAcwcBAv+OwWgHTR8BaAhHQJM12gVXV9Z1fZQoaAZHQHGUecx0uDloB0vyaAhHQJM3JJsfq5d1fZQoaAZHQG97Son8baRoB0vuaAhHQJM3mdhAnlZ1fZQoaAZHQFIiKfWcz69oB0u6aAhHQJM3z8sMAm11fZQoaAZHQHH9BUm2LHdoB03TAWgIR0CTOAvUz9CNdX2UKGgGR0BvvqEnLJS0aAdNbgFoCEdAkzitJnQIEHV9lChoBkdAcC3XcgyM1mgHS/9oCEdAkzjumJm/WXV9lChoBkdAbDswK0D2amgHS/BoCEdAkzrHuVopQXV9lChoBkdAb9GhM8HObGgHTQMBaAhHQJM6x6v7m+11fZQoaAZHQHE94wdsBQxoB00VAWgIR0CTO5Em6XjVdX2UKGgGR0BvRdoi9qUNaAdNAAFoCEdAkz2YlyBClnV9lChoBkdAcML4bCJoCmgHTRcBaAhHQJM9xTP0I1N1fZQoaAZHQHGq0KiO/+NoB00cAWgIR0CTPc1K5CnhdX2UKGgGR0BxtyKdhAnlaAdL4GgIR0CTPhxXXAdodX2UKGgGR0BxZ2i7CiyqaAdNIQFoCEdAkz6W7aqS5nV9lChoBkdAcoNz/IbOvGgHTS4BaAhHQJM/Fng5zYF1fZQoaAZHQHFlVJUYKploB0vvaAhHQJM/acBltj11fZQoaAZHQHGo8VtXPqtoB0v3aAhHQJM/bnKW9lF1fZQoaAZHQHCFuFHrhR9oB00FAWgIR0CTQYLpiZv2dX2UKGgGR0A9sUZeiSJTaAdLymgIR0CTQbvQ4S6EdX2UKGgGR0BwwvZVXFLnaAdNNgFoCEdAk0LlvIfbK3V9lChoBkdAbx1xuKoAGWgHTQABaAhHQJNDnHeaa1F1fZQoaAZHQCNKEJ0GNaRoB0upaAhHQJNFTc2zfJp1fZQoaAZHQHFR2gOBlMBoB0vYaAhHQJNGRPxhDw91fZQoaAZHQHAQY2CNCJJoB0v9aAhHQJNGpG5MDfZ1fZQoaAZHQHB62e18b71oB0v8aAhHQJNGzE61b7l1fZQoaAZHQHFJtjwx33ZoB00JAWgIR0CTRznlnyuqdX2UKGgGR0Bv0e2LHdXUaAdNFQFoCEdAk0f2Y8dPtXV9lChoBkdAb+I5mRNh3WgHTeEBaAhHQJNIYWAPNFB1fZQoaAZHQG+ZFPacqe9oB00EAWgIR0CTSF50bLlndX2UKGgGR0Bu4aErXlKcaAdNBQFoCEdAk0iwkgOjI3V9lChoBkdAOkM01qFh5WgHS8FoCEdAk0nUygwoLHV9lChoBkdAcZ/jt5UtI2gHS/ZoCEdAk0o+a8YhuHV9lChoBkdAbrkWUKRdQmgHS/ZoCEdAk0p20u14PnV9lChoBkdAcJslFc6eXmgHTecBaAhHQJNdkr08NhF1fZQoaAZHQHFXV6JIlMRoB00HAWgIR0CTXcoWpIczdX2UKGgGR0BwaRWV/tpmaAdL3mgIR0CTXqmDUVi4dX2UKGgGR0BPotJOFg2IaAdL2WgIR0CTYAdhRZU2dX2UKGgGR0Bxo4abWmP6aAdNIQFoCEdAk2AgYk3S8nV9lChoBkdAbUfvaURnOGgHTQkBaAhHQJNggFKTSst1fZQoaAZHQG6uaSs8xKxoB0v1aAhHQJNhW4smOVB1fZQoaAZHQHIIvRu0kW1oB00GAWgIR0CTYezUI9kjdX2UKGgGR0BvNLsdDIBBaAdNMwFoCEdAk2JJYkmhNHV9lChoBkdAckNwRXfZVWgHTUQBaAhHQJNiT5ftx+91fZQoaAZHQHJWRt+CsfdoB001AWgIR0CTY7L/CIk7dX2UKGgGR0BwyLnMdLg5aAdNGgFoCEdAk2P0M5OrQ3V9lChoBkdAcVqjTa0x/WgHTQ8BaAhHQJNkBzXBgu11fZQoaAZHQHA7ZfICEHtoB00MAWgIR0CTZCAI6bONdX2UKGgGR0BSuvoRqXWwaAdN6ANoCEdAk2WU2Hck+3V9lChoBkdAcLwScslLOGgHS/1oCEdAk2Xb4N7SiXV9lChoBkdAYvpvOyE+PmgHTegDaAhHQJNmxAQg9vF1fZQoaAZHQG6iTYmLLp1oB00RAWgIR0CTZ1BvrGBGdX2UKGgGR0Bzjys4ku6FaAdNBQFoCEdAk2hd1p0wJ3V9lChoBkdAbkAJIlMRH2gHTQ8BaAhHQJNonM3ZPEd1fZQoaAZHQHEdZSzgMttoB00ZAWgIR0CTaWVrAP/adX2UKGgGR0BwthQ0oBq9aAdL92gIR0CTaal1KXfJdX2UKGgGR0BB5gzYVZcLaAdLu2gIR0CTafSApazNdX2UKGgGR0BvDbWmP5pKaAdL+WgIR0CTag8e0XxfdX2UKGgGR0Bvof5eqrBCaAdNHgFoCEdAk2o/Nqxkd3V9lChoBkdAb/K1sLv1DmgHTQABaAhHQJNrb9CNS611fZQoaAZHQHFCVzySV4ZoB0vhaAhHQJNsTC3w1BN1fZQoaAZHQG8jPiT+vQpoB00iAWgIR0CTbKps41gqdX2UKGgGR0ByVRpg1FYuaAdLzWgIR0CTbN6zmfXgdX2UKGgGR0ByUsfvF3pwaAdNJwFoCEdAk2znPu5SWXV9lChoBkdAcpXKZ2IO6WgHTXABaAhHQJNtXqcEvCd1fZQoaAZHQHArrZrYXftoB00IAWgIR0CTbbc1fmcOdX2UKGgGR0Bw4B4FA3UAaAdL5WgIR0CTbggfEGaAdX2UKGgGR0BHGulXRw6yaAdLu2gIR0CTbzI+GGmDdX2UKGgGR0Bwz2NlyzX0aAdL9mgIR0CTb1KjBVMmdX2UKGgGR0BvJnl2eQMhaAdL4GgIR0CTb5VQyhzvdX2UKGgGR0BKFEnssxwiaAdL0GgIR0CTb6qlP8AJdX2UKGgGR0BxSxvCMxXXaAdNIQFoCEdAk3CvsmfGuXV9lChoBkdAblDk4FRpDmgHS+toCEdAk3C1OoHcDnV9lChoBkdAb12c6vJRwmgHTQwBaAhHQJNxCG7Bfrt1fZQoaAZHQHHCq7yxzJZoB0veaAhHQJNyZPk7wKB1fZQoaAZHQHGUgMx46fdoB0voaAhHQJNzD9CNS611fZQoaAZHQHAd2/zreIloB0vpaAhHQJNzT/bTMJR1fZQoaAZHwBNrHuJDVpdoB0udaAhHQJN0KjASFoN1fZQoaAZHQHBMWCuloDhoB00TAWgIR0CTdJy3CsOodX2UKGgGR0BtwL3fyf+TaAdNAgFoCEdAk3SnCj1wpHV9lChoBkdAcWTTsIE8rGgHTQUBaAhHQJN1bIIWxhV1fZQoaAZHQHFIo5Lh73RoB0vsaAhHQJN2C6DoQnR1fZQoaAZHQHH+CYsunMtoB00uAWgIR0CTdk8L8aXKdX2UKGgGR0Bxaax1PnB+aAdNAAFoCEdAk3cS88La3HV9lChoBkdAccbeZXuE3GgHS/loCEdAk3h318LKFXV9lChoBkdAcsFJdSl3yWgHTT0BaAhHQJN4pKJ2t+11fZQoaAZHQG6wpWNm16VoB00XAWgIR0CTeQKqGUOedX2UKGgGR0Bzl36l+EytaAdNLgFoCEdAk3muclPac3V9lChoBkdAb7WIgNgBtGgHS/toCEdAk3n5uhsZYXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVqwEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMIS90bXAvaXB5a2VybmVsXzE0OTkvNDAwNTgyMDc4NC5weZSMCDxsYW1iZGE+lEsNQwIEAJQpKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UdU5OTnSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBZ9lH2UKGgTaA2MDF9fcXVhbG5hbWVfX5RoDYwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVqAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEcAAAAAAAAAAIWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-5.15.133+-x86_64-with-glibc2.31 # 1 SMP Tue Dec 19 13:14:11 UTC 2023", "Python": "3.10.13", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.2", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.26.2"}}