AML_A2_Q4 / README.md
heyitskim1912's picture
update model card README.md
5afad00
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - cifar10
metrics:
  - accuracy
model-index:
  - name: AML_A2_Q4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: cifar10
          type: cifar10
          config: plain_text
          split: train[:]
          args: plain_text
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9894

AML_A2_Q4

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the cifar10 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0432
  • Accuracy: 0.9894

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 20
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1642 1.0 2250 0.0572 0.9862
0.1503 2.0 4500 0.0591 0.9854
0.1818 3.0 6750 0.0432 0.9894

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3