File size: 13,682 Bytes
49e75a0
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x780468afbd90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x780468afbe20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x780468afbeb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x780468afbf40>", "_build": "<function ActorCriticPolicy._build at 0x780468b04040>", "forward": "<function ActorCriticPolicy.forward at 0x780468b040d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x780468b04160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x780468b041f0>", "_predict": "<function ActorCriticPolicy._predict at 0x780468b04280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x780468b04310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x780468b043a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x780468b04430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x780468aa77c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693558123773912412, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaeiLyDBgU/zDqKPcDOsL4sIJs9dh3TuwAAAAAAAAAAwIXYPRD8gT8F+gM+4JTQvqlPiz6Xrws+AAAAAAAAAADgGVA+f01EPxJfTT3zkdy+rQyJPt4sqb0AAAAAAAAAAE3Wvr2VjQA/wNQBPnElvr5dNCM8MyROPAAAAAAAAAAAs7YdvYPMCD3SRCU+sBp9vn8jlzo/m509AAAAAAAAAADNqzi9hDdpPx8bA72w4c++BuaTvTMhVr0AAAAAAAAAALODRD0ckxs9KqDuveencL7q4XG9U8r8PAAAAAAAAAAArS07PjqNiD9Omfc9xebNvo8YoD7jDM68AAAAAAAAAADaxpy9kcSTPubEqT6/bZO+A3n+PVstuLsAAAAAAAAAAEDlpz2WrJA/1oSmPsRjBL8CzyQ9GmXNPQAAAAAAAAAAWmmTPY5SPz9Sr6s6A9m6vif5uD26GNO7AAAAAAAAAACaXMQ9W/FfPz1/6TwytLe+OwUQPtAPAL4AAAAAAAAAAM1NIr2FA5a5voyfO1C2RrwHKIW6axMuvQAAAAAAAIA/ulgDvlC3tj+NzOW+s/ywvslmVb4wZ669AAAAAAAAAAAzvTa8Nr92vMnUnj362Xs86luhvV2Zgr0AAIA/AACAP5qAVz5mPLA/YF4UP40//r7pdbI+6lJ6PgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVCQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFKKT4cm0GMAWyUS/aMAXSUR0Cg8x3gtOEedX2UKGgGR0BtkTEtNBWxaAdL+GgIR0Cg8zzcqOLjdX2UKGgGR0BSpwzHjp9raAdLymgIR0Cg8/tAC4jKdX2UKGgGR0Bt3bw2ETQFaAdL7mgIR0Cg9MrxI8QqdX2UKGgGR0Bs25MpPRAsaAdL+GgIR0Cg9NTmGM4tdX2UKGgGR0BwXi7L+xW1aAdL7mgIR0Cg9PenZTQ3dX2UKGgGR0ByGWyNXHR1aAdNNAFoCEdAoPUjjin5z3V9lChoBkdAb3VSLIgeR2gHS+loCEdAoPVVd3SrpHV9lChoBkdAcPhKohpxm2gHTQcBaAhHQKD1bD3M6il1fZQoaAZHQG7pwdKdxyZoB00DAWgIR0Cg9htoi9qUdX2UKGgGR0BwZol4TsY3aAdNFwFoCEdAoPYzb349HXV9lChoBkdAcv5lJpWV/2gHS/BoCEdAoPZZFuvU0HV9lChoBkdAcMFwh4dIXmgHS+1oCEdAoPZ4L7XQMXV9lChoBkdAaN0FcIJJG2gHTegDaAhHQKD2pPfsNUh1fZQoaAZHQHDAe0CzTndoB0vtaAhHQKD2vCWNWEN1fZQoaAZHQG6WfATIvJ1oB0v7aAhHQKD2yEi+tbN1fZQoaAZHQHDrY60Y0l9oB00vAWgIR0Cg9t2BjFyadX2UKGgGR0BAhhJiAlOXaAdLwmgIR0Cg9uJh4MWodX2UKGgGR0ByeZJWeYlZaAdNGgFoCEdAoPcT2tdRi3V9lChoBkdAbs6UFB6a9mgHS+5oCEdAoPgLDjzZpXV9lChoBkdAcIOlz2exwGgHS9toCEdAoPhAoVmBfHV9lChoBkdAcoG4gzP8h2gHTQgBaAhHQKD4jAfMfRx1fZQoaAZHQHEbCidrftRoB00dAWgIR0Cg+LFOXVsldX2UKGgGR0Bx92p2ll9SaAdNCQFoCEdAoPi/WpZOi3V9lChoBkdAcW3O1fE4vWgHS/poCEdAoPjPthNM5HV9lChoBkdAcD+jFyaNM2gHS+loCEdAoPkoogFHKHV9lChoBkdAbocLiuMdcWgHS+toCEdAoPlkpb2US3V9lChoBkdAcYWiKBNEgGgHS+hoCEdAoPl6GvfTC3V9lChoBkdAcPztA9mpVGgHTRYBaAhHQKD53qwhW5p1fZQoaAZHQG7yz1bqyGBoB0v0aAhHQKD6HiBoVVR1fZQoaAZHQHOaOenQ6ZJoB0v6aAhHQKD6LDv3JxN1fZQoaAZHQHMYyKR+z+poB00GAWgIR0Cg+i8vM8oydX2UKGgGR0BxujMHKOktaAdNFAFoCEdAoPpmso2GZnV9lChoBkdAcjN/bCaZyGgHTQIBaAhHQKD6h77bcoJ1fZQoaAZHQHHFuAVfu1FoB0vXaAhHQKEFXf3vhIh1fZQoaAZHQHDgaAvtdAxoB01jAWgIR0ChBdsANoaldX2UKGgGR0BwZKYWtU4raAdNDwFoCEdAoQbdjmSyMXV9lChoBkdAcXVRoAXEZWgHS/FoCEdAoQcJF/hESnV9lChoBkdAcUFDQZ4wAWgHTQABaAhHQKEHQpPRArx1fZQoaAZHQHEbD9wWFexoB00XAWgIR0ChB3wKKHfudX2UKGgGR0BzW3RzBAObaAdNKQFoCEdAoQgLnied1HV9lChoBkdAcI0dBBzFM2gHTQ0BaAhHQKEIaJSBK+V1fZQoaAZHQHI+YCIUJv5oB00kAWgIR0ChCH/yGzrvdX2UKGgGR0ByxlP2wmmcaAdNFAFoCEdAoQiaQYDT0HV9lChoBkdAcmFI7vG6w2gHTQMBaAhHQKEIwuZCv5h1fZQoaAZHQHHBaEJ0GNdoB0vxaAhHQKEIwDeTFER1fZQoaAZHQHAy10gbIcRoB0v3aAhHQKEI9JlrdnF1fZQoaAZHQHHfJjH4oJBoB0v7aAhHQKEI/wVj7Q91fZQoaAZHQHMVCUornT1oB0v+aAhHQKEJXBLPD511fZQoaAZHQG9jmzSkTHtoB0viaAhHQKEJdgpjMFF1fZQoaAZHQHDh5MURFqloB00gAWgIR0ChCaWHLzPKdX2UKGgGR0BxRM6hg3LnaAdL4mgIR0ChCbcLronsdX2UKGgGR0BwCMMqjJuEaAdL8GgIR0ChCpv+4smOdX2UKGgGR0Bwed7Uoa1kaAdL3WgIR0ChCqNH6MzedX2UKGgGR0Bw2uNR3u/laAdNAwFoCEdAoQrGAEt/WnV9lChoBkdAbVdwkPczqWgHTQEBaAhHQKEK/leWv8t1fZQoaAZHQHD2j4tYjjdoB0vkaAhHQKELyDsdDIB1fZQoaAZHQG6+tJe3QUpoB00WAWgIR0ChC9tHxz7udX2UKGgGR0Btl8EzO5avaAdL+WgIR0ChC/dYOlO5dX2UKGgGR0BuWqIvalDXaAdNCgFoCEdAoQwIbIcR2HV9lChoBkdAcJl0e2d/a2gHS/5oCEdAoQwzgwXZXnV9lChoBkdAcRMf2saKk2gHTQUBaAhHQKEMcp2ll9V1fZQoaAZHQHF2bbHp8nhoB00JAWgIR0ChDIwfIS13dX2UKGgGR0BxKh+4LCvYaAdNKwFoCEdAoQyZGrjo6nV9lChoBkdAcXX0PH1e0GgHS+doCEdAoQyhHAh0Q3V9lChoBkdAcOrt/4Irv2gHS/toCEdAoQzEmQbMo3V9lChoBkdAcRQsnRb8nGgHS/doCEdAoQ0P8fmtAHV9lChoBkdAbm8fEGZ/kWgHTQYBaAhHQKENK/xDst11fZQoaAZHQHBSns9jgAJoB0vkaAhHQKENrF3pwCN1fZQoaAZHQG3IvS2H+IdoB0vzaAhHQKEN6bkwN9Z1fZQoaAZHQHJLtrXUYsNoB0v5aAhHQKEOHGQ0XP91fZQoaAZHQHNnl/2Cdz5oB0v1aAhHQKEOROX3QD51fZQoaAZHQHBXHyAhB7hoB0v3aAhHQKEPHugpSaV1fZQoaAZHQHH0O5rgwXZoB00AAWgIR0ChDzKAjIJadX2UKGgGR0BxsXXg9/z8aAdL02gIR0ChD17ulXRxdX2UKGgGR0ByHNPUKArhaAdL8mgIR0ChD2OF6AvtdX2UKGgGR0ByYSlMyrPuaAdL7mgIR0ChD5KOT7l8dX2UKGgGR0Bx3tk+X7cgaAdNDwFoCEdAoQ+UtI0653V9lChoBkdAcJMaisXBQGgHTQ4BaAhHQKEPoO9WZJF1fZQoaAZHQHBIEm2LHdZoB0vvaAhHQKEPrwZwXIl1fZQoaAZHQG4Aurp7kXFoB0vvaAhHQKEPujFhodx1fZQoaAZHQHHxCGBWge1oB0vmaAhHQKEPyW/rSmZ1fZQoaAZHQHJdy6H0se5oB0vgaAhHQKEQHikwevJ1fZQoaAZHQG8aoK+i8FpoB0vwaAhHQKEQMjBVMmF1fZQoaAZHQHFisMqjJuFoB0vdaAhHQKEQk3c580F1fZQoaAZHQHKEMzdk8RtoB0vhaAhHQKEQz8xbjcV1fZQoaAZHQHAeQaef7JpoB0vxaAhHQKERMvzOHFh1fZQoaAZHQHL9yZ4Oc2BoB0v3aAhHQKERbSLqD9R1fZQoaAZHQHKTFGTcIqtoB0vhaAhHQKESAc1fmcR1fZQoaAZHQHHoxzRx95RoB0vnaAhHQKESYyk9ECx1fZQoaAZHQHEZznNgSe1oB0vbaAhHQKESZpfx+a11fZQoaAZHQG6xq8UVSGdoB00JAWgIR0ChEr482aUidX2UKGgGR0BxI0fT1CgLaAdNFQFoCEdAoRMZbKRuCXV9lChoBkdAcHnlZHNHH2gHTQgBaAhHQKETLAi3XqZ1fZQoaAZHQG5PvPTodMloB00AAWgIR0ChEyvttyggdX2UKGgGR0BzdGFzuF6BaAdL+2gIR0ChEy3lr/KhdX2UKGgGR0By9PAaef7KaAdNFwFoCEdAoRNspRXOnnV9lChoBkdAck3Qsf7rLWgHS+xoCEdAoRNykl/pdXV9lChoBkdAcNQ8YQ8OkWgHS/loCEdAoROE3VCoj3V9lChoBkdAcDTC6pYLcGgHTS4BaAhHQKETmdzXBgx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 404, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}