File size: 5,597 Bytes
b7d9967
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2022, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Gradient of Sampler with Finite difference method."""

from __future__ import annotations

from collections import defaultdict
from collections.abc import Sequence

import numpy as np

from qiskit.circuit import Parameter, QuantumCircuit
from qiskit.primitives import BaseSampler
from qiskit.providers import Options

from ..base.base_sampler_gradient import BaseSamplerGradient
from ..base.sampler_gradient_result import SamplerGradientResult

from ...exceptions import AlgorithmError


class SPSASamplerGradient(BaseSamplerGradient):
    """
    Compute the gradients of the sampling probability by the Simultaneous Perturbation Stochastic
    Approximation (SPSA) [1].

    **Reference:**
    [1] J. C. Spall, Adaptive stochastic approximation by the simultaneous perturbation method in
    IEEE Transactions on Automatic Control, vol. 45, no. 10, pp. 1839-1853, Oct 2020,
    `doi: 10.1109/TAC.2000.880982 <https://ieeexplore.ieee.org/document/880982>`_.
    """

    def __init__(
        self,
        sampler: BaseSampler,
        epsilon: float,
        batch_size: int = 1,
        seed: int | None = None,
        options: Options | None = None,
    ):
        """
        Args:
            sampler: The sampler used to compute the gradients.
            epsilon: The offset size for the SPSA gradients.
            batch_size: number of gradients to average.
            seed: The seed for a random perturbation vector.
            options: Primitive backend runtime options used for circuit execution.
                The order of priority is: options in ``run`` method > gradient's
                default options > primitive's default setting.
                Higher priority setting overrides lower priority setting

        Raises:
            ValueError: If ``epsilon`` is not positive.
        """
        if epsilon <= 0:
            raise ValueError(f"epsilon ({epsilon}) should be positive.")
        self._batch_size = batch_size
        self._epsilon = epsilon
        self._seed = np.random.default_rng(seed)

        super().__init__(sampler, options)

    def _run(
        self,
        circuits: Sequence[QuantumCircuit],
        parameter_values: Sequence[Sequence[float]],
        parameters: Sequence[Sequence[Parameter]],
        **options,
    ) -> SamplerGradientResult:
        """Compute the sampler gradients on the given circuits."""
        job_circuits, job_param_values, metadata, offsets = [], [], [], []
        all_n = []
        for circuit, parameter_values_, parameters_ in zip(circuits, parameter_values, parameters):
            # Indices of parameters to be differentiated.
            indices = [circuit.parameters.data.index(p) for p in parameters_]
            metadata.append({"parameters": parameters_})
            offset = np.array(
                [
                    (-1) ** (self._seed.integers(0, 2, len(circuit.parameters)))
                    for _ in range(self._batch_size)
                ]
            )
            plus = [parameter_values_ + self._epsilon * offset_ for offset_ in offset]
            minus = [parameter_values_ - self._epsilon * offset_ for offset_ in offset]
            offsets.append(offset)

            # Combine inputs into a single job to reduce overhead.
            n = 2 * self._batch_size
            job_circuits.extend([circuit] * n)
            job_param_values.extend(plus + minus)
            all_n.append(n)

        # Run the single job with all circuits.
        job = self._sampler.run(job_circuits, job_param_values, **options)
        try:
            results = job.result()
        except Exception as exc:
            raise AlgorithmError("Sampler job failed.") from exc

        # Compute the gradients.
        gradients = []
        partial_sum_n = 0
        for i, n in enumerate(all_n):
            dist_diffs = {}
            result = results.quasi_dists[partial_sum_n : partial_sum_n + n]
            for j, (dist_plus, dist_minus) in enumerate(zip(result[: n // 2], result[n // 2 :])):
                dist_diff: dict[int, float] = defaultdict(float)
                for key, value in dist_plus.items():
                    dist_diff[key] += value / (2 * self._epsilon)
                for key, value in dist_minus.items():
                    dist_diff[key] -= value / (2 * self._epsilon)
                dist_diffs[j] = dist_diff
            gradient = []
            indices = [circuits[i].parameters.data.index(p) for p in metadata[i]["parameters"]]
            for j in indices:
                gradient_j: dict[int, float] = defaultdict(float)
                for k in range(self._batch_size):
                    for key, value in dist_diffs[k].items():
                        gradient_j[key] += value * offsets[i][k][j]
                gradient_j = {key: value / self._batch_size for key, value in gradient_j.items()}
                gradient.append(gradient_j)
            gradients.append(gradient)
            partial_sum_n += n

        opt = self._get_local_options(options)
        return SamplerGradientResult(gradients=gradients, metadata=metadata, options=opt)