File size: 13,899 Bytes
b7d9967
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
# This code is part of Qiskit.
#
# (C) Copyright IBM 2020, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""DictStateFn Class"""

import itertools
from typing import Dict, List, Optional, Set, Union, cast

import numpy as np
from scipy import sparse

from qiskit.circuit import ParameterExpression
from qiskit.opflow.exceptions import OpflowError
from qiskit.opflow.list_ops.list_op import ListOp
from qiskit.opflow.operator_base import OperatorBase
from qiskit.opflow.state_fns.state_fn import StateFn
from qiskit.opflow.state_fns.vector_state_fn import VectorStateFn
from qiskit.quantum_info import Statevector
from qiskit.result import Result
from qiskit.utils import algorithm_globals
from qiskit.utils.deprecation import deprecate_func


class DictStateFn(StateFn):
    """Deprecated: A class for state functions and measurements which are defined by a lookup table,

    stored in a dict.

    """

    primitive: Dict[str, complex]

    # TODO allow normalization somehow?
    @deprecate_func(

        since="0.24.0",

        additional_msg="For code migration guidelines, visit https://qisk.it/opflow_migration.",

    )
    def __init__(

        self,

        primitive: Union[str, dict, Result] = None,

        coeff: Union[complex, ParameterExpression] = 1.0,

        is_measurement: bool = False,

        from_operator: bool = False,

    ) -> None:
        """

        Args:

            primitive: The dict, single bitstring (if defining a basis sate), or Qiskit

                Result, which defines the behavior of the underlying function.

            coeff: A coefficient by which to multiply the state function.

            is_measurement: Whether the StateFn is a measurement operator.

            from_operator: if True the StateFn is derived from OperatorStateFn. (Default: False)



        Raises:

            TypeError: invalid parameters.

        """
        # If the initial density is a string, treat this as a density dict
        # with only a single basis state.
        if isinstance(primitive, str):
            primitive = {primitive: 1}

        # NOTE:
        # 1) This is not the same as passing in the counts dict directly, as this will
        # convert the shot numbers to
        # probabilities, whereas passing in the counts dict will not.
        # 2) This will extract counts for both shot and statevector simulations.
        # To use the statevector,
        # simply pass in the statevector.
        # 3) This will only extract the first result.
        if isinstance(primitive, Result):
            counts = primitive.get_counts()
            # NOTE: Need to square root to take correct Pauli measurements!
            primitive = {
                bstr: (shots / sum(counts.values())) ** 0.5 for (bstr, shots) in counts.items()
            }

        if not isinstance(primitive, dict):
            raise TypeError(
                "DictStateFn can only be instantiated with dict, "
                "string, or Qiskit Result, not {}".format(type(primitive))
            )

        super().__init__(primitive, coeff=coeff, is_measurement=is_measurement)
        self.from_operator = from_operator

    def primitive_strings(self) -> Set[str]:
        return {"Dict"}

    @property
    def num_qubits(self) -> int:
        return len(next(iter(self.primitive)))

    @property
    def settings(self) -> Dict:
        """Return settings."""
        data = super().settings
        data["from_operator"] = self.from_operator
        return data

    def add(self, other: OperatorBase) -> OperatorBase:
        if not self.num_qubits == other.num_qubits:
            raise ValueError(
                "Sum over statefns with different numbers of qubits, {} and {}, is not well "
                "defined".format(self.num_qubits, other.num_qubits)
            )

        # Right now doesn't make sense to add a StateFn to a Measurement
        if isinstance(other, DictStateFn) and self.is_measurement == other.is_measurement:
            # TODO add compatibility with vector and Operator?
            if self.primitive == other.primitive:
                return DictStateFn(
                    self.primitive,
                    coeff=self.coeff + other.coeff,
                    is_measurement=self.is_measurement,
                )
            else:
                new_dict = {
                    b: (v * self.coeff) + (other.primitive.get(b, 0) * other.coeff)
                    for (b, v) in self.primitive.items()
                }
                new_dict.update(
                    {
                        b: v * other.coeff
                        for (b, v) in other.primitive.items()
                        if b not in self.primitive
                    }
                )
                return DictStateFn(new_dict, is_measurement=self._is_measurement)
        # pylint: disable=cyclic-import
        from ..list_ops.summed_op import SummedOp

        return SummedOp([self, other])

    def adjoint(self) -> "DictStateFn":
        return DictStateFn(
            {b: np.conj(v) for (b, v) in self.primitive.items()},
            coeff=self.coeff.conjugate(),
            is_measurement=(not self.is_measurement),
        )

    def permute(self, permutation: List[int]) -> "DictStateFn":
        new_num_qubits = max(permutation) + 1
        if self.num_qubits != len(permutation):
            raise OpflowError("New index must be defined for each qubit of the operator.")

        # helper function to permute the key
        def perm(key):
            list_key = ["0"] * new_num_qubits
            for i, k in enumerate(permutation):
                list_key[k] = key[i]
            return "".join(list_key)

        new_dict = {perm(key): value for key, value in self.primitive.items()}
        return DictStateFn(new_dict, coeff=self.coeff, is_measurement=self.is_measurement)

    def _expand_dim(self, num_qubits: int) -> "DictStateFn":
        pad = "0" * num_qubits
        new_dict = {key + pad: value for key, value in self.primitive.items()}
        return DictStateFn(new_dict, coeff=self.coeff, is_measurement=self.is_measurement)

    def tensor(self, other: OperatorBase) -> OperatorBase:
        # Both dicts
        if isinstance(other, DictStateFn):
            new_dict = {
                k1 + k2: v1 * v2
                for (
                    (
                        k1,
                        v1,
                    ),
                    (k2, v2),
                ) in itertools.product(self.primitive.items(), other.primitive.items())
            }
            return StateFn(
                new_dict, coeff=self.coeff * other.coeff, is_measurement=self.is_measurement
            )
        # pylint: disable=cyclic-import
        from ..list_ops.tensored_op import TensoredOp

        return TensoredOp([self, other])

    def to_density_matrix(self, massive: bool = False) -> np.ndarray:
        OperatorBase._check_massive("to_density_matrix", True, self.num_qubits, massive)
        states = int(2**self.num_qubits)
        return self.to_matrix(massive=massive) * np.eye(states) * self.coeff

    def to_matrix(self, massive: bool = False) -> np.ndarray:
        OperatorBase._check_massive("to_matrix", False, self.num_qubits, massive)
        states = int(2**self.num_qubits)
        probs = np.zeros(states) + 0.0j
        for k, v in self.primitive.items():
            probs[int(k, 2)] = v
        vec = probs * self.coeff

        # Reshape for measurements so np.dot still works for composition.
        return vec if not self.is_measurement else vec.reshape(1, -1)

    def to_spmatrix(self) -> sparse.spmatrix:
        """Same as to_matrix, but returns csr sparse matrix.



        Returns:

            CSR sparse matrix representation of the State function.



        Raises:

            ValueError: invalid parameters.

        """

        indices = [int(v, 2) for v in self.primitive.keys()]
        vals = np.array(list(self.primitive.values())) * self.coeff
        spvec = sparse.csr_matrix(
            (vals, (np.zeros(len(indices), dtype=int), indices)), shape=(1, 2**self.num_qubits)
        )
        return spvec if not self.is_measurement else spvec.transpose()

    def to_spmatrix_op(self) -> OperatorBase:
        """Convert this state function to a ``SparseVectorStateFn``."""
        from .sparse_vector_state_fn import SparseVectorStateFn

        return SparseVectorStateFn(self.to_spmatrix(), self.coeff, self.is_measurement)

    def to_circuit_op(self) -> OperatorBase:
        """Convert this state function to a ``CircuitStateFn``."""
        from .circuit_state_fn import CircuitStateFn

        csfn = CircuitStateFn.from_dict(self.primitive) * self.coeff
        return csfn.adjoint() if self.is_measurement else csfn

    def __str__(self) -> str:
        prim_str = str(self.primitive)
        if self.coeff == 1.0:
            return "{}({})".format(
                "DictStateFn" if not self.is_measurement else "DictMeasurement", prim_str
            )
        else:
            return "{}({}) * {}".format(
                "DictStateFn" if not self.is_measurement else "DictMeasurement",
                prim_str,
                self.coeff,
            )

    # pylint: disable=too-many-return-statements
    def eval(

        self,

        front: Optional[

            Union[str, Dict[str, complex], np.ndarray, OperatorBase, Statevector]

        ] = None,

    ) -> Union[OperatorBase, complex]:
        if front is None:
            sparse_vector_state_fn = self.to_spmatrix_op().eval()
            return sparse_vector_state_fn

        if not self.is_measurement and isinstance(front, OperatorBase):
            raise ValueError(
                "Cannot compute overlap with StateFn or Operator if not Measurement. Try taking "
                "sf.adjoint() first to convert to measurement."
            )

        if isinstance(front, ListOp) and front.distributive:
            return front.combo_fn(
                [self.eval(front.coeff * front_elem) for front_elem in front.oplist]
            )

        # For now, always do this. If it's not performant, we can be more granular.
        if not isinstance(front, OperatorBase):
            front = StateFn(front)

        # pylint: disable=cyclic-import
        from ..operator_globals import EVAL_SIG_DIGITS

        # If the primitive is a lookup of bitstrings,
        # we define all missing strings to have a function value of
        # zero.
        if isinstance(front, DictStateFn):
            # If self is come from operator, it should be expanded as
            # <self|front> = <front| self | front>.
            front_coeff = (
                front.coeff * front.coeff.conjugate() if self.from_operator else front.coeff
            )
            return np.round(
                cast(
                    float,
                    sum(v * front.primitive.get(b, 0) for (b, v) in self.primitive.items())
                    * self.coeff
                    * front_coeff,
                ),
                decimals=EVAL_SIG_DIGITS,
            )

        # All remaining possibilities only apply when self.is_measurement is True

        if isinstance(front, VectorStateFn):
            # TODO does it need to be this way for measurement?
            # return sum([v * front.primitive.data[int(b, 2)] *
            # np.conj(front.primitive.data[int(b, 2)])
            return np.round(
                cast(
                    float,
                    sum(v * front.primitive.data[int(b, 2)] for (b, v) in self.primitive.items())
                    * self.coeff,
                ),
                decimals=EVAL_SIG_DIGITS,
            )

        from .circuit_state_fn import CircuitStateFn

        if isinstance(front, CircuitStateFn):
            # Don't reimplement logic from CircuitStateFn
            self_adjoint = cast(DictStateFn, self.adjoint())
            return np.conj(front.adjoint().eval(self_adjoint.primitive)) * self.coeff

        from .operator_state_fn import OperatorStateFn

        if isinstance(front, OperatorStateFn):
            return cast(Union[OperatorBase, complex], front.adjoint().eval(self.adjoint()))

        # All other OperatorBases go here
        self_adjoint = cast(DictStateFn, self.adjoint())
        adjointed_eval = cast(OperatorBase, front.adjoint().eval(self_adjoint.primitive))
        return adjointed_eval.adjoint() * self.coeff

    def sample(

        self, shots: int = 1024, massive: bool = False, reverse_endianness: bool = False

    ) -> Dict[str, float]:
        probs = np.square(np.abs(np.array(list(self.primitive.values()))))
        unique, counts = np.unique(
            algorithm_globals.random.choice(
                list(self.primitive.keys()), size=shots, p=(probs / sum(probs))
            ),
            return_counts=True,
        )
        counts = dict(zip(unique, counts))
        if reverse_endianness:
            scaled_dict = {bstr[::-1]: (prob / shots) for (bstr, prob) in counts.items()}
        else:
            scaled_dict = {bstr: (prob / shots) for (bstr, prob) in counts.items()}
        return dict(sorted(scaled_dict.items(), key=lambda x: x[1], reverse=True))