File size: 17,790 Bytes
b7d9967
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
# This code is part of Qiskit.
#
# (C) Copyright IBM 2020, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""CircuitStateFn Class"""


from typing import Dict, List, Optional, Set, Union, cast

import numpy as np

from qiskit import BasicAer, ClassicalRegister, QuantumCircuit, transpile
from qiskit.circuit import Instruction, ParameterExpression
from qiskit.circuit.exceptions import CircuitError
from qiskit.circuit.library import IGate, StatePreparation
from qiskit.opflow.exceptions import OpflowError
from qiskit.opflow.list_ops.composed_op import ComposedOp
from qiskit.opflow.list_ops.list_op import ListOp
from qiskit.opflow.list_ops.summed_op import SummedOp
from qiskit.opflow.list_ops.tensored_op import TensoredOp
from qiskit.opflow.operator_base import OperatorBase
from qiskit.opflow.primitive_ops.circuit_op import CircuitOp
from qiskit.opflow.primitive_ops.matrix_op import MatrixOp
from qiskit.opflow.primitive_ops.pauli_op import PauliOp
from qiskit.opflow.state_fns.state_fn import StateFn
from qiskit.opflow.state_fns.vector_state_fn import VectorStateFn
from qiskit.quantum_info import Statevector
from qiskit.utils.deprecation import deprecate_func


class CircuitStateFn(StateFn):
    r"""

    Deprecated: A class for state functions and measurements which are defined by the action of a

    QuantumCircuit starting from \|0⟩, and stored using Terra's ``QuantumCircuit`` class.

    """
    primitive: QuantumCircuit

    # TODO allow normalization somehow?
    @deprecate_func(

        since="0.24.0",

        additional_msg="For code migration guidelines, visit https://qisk.it/opflow_migration.",

    )
    def __init__(

        self,

        primitive: Union[QuantumCircuit, Instruction] = None,

        coeff: Union[complex, ParameterExpression] = 1.0,

        is_measurement: bool = False,

        from_operator: bool = False,

    ) -> None:
        """

        Args:

            primitive: The ``QuantumCircuit`` (or ``Instruction``, which will be converted) which

                defines the behavior of the underlying function.

            coeff: A coefficient multiplying the state function.

            is_measurement: Whether the StateFn is a measurement operator.

            from_operator: if True the StateFn is derived from OperatorStateFn. (Default: False)



        Raises:

            TypeError: Unsupported primitive, or primitive has ClassicalRegisters.

        """
        if isinstance(primitive, Instruction):
            qc = QuantumCircuit(primitive.num_qubits)
            qc.append(primitive, qargs=range(primitive.num_qubits))
            primitive = qc

        if not isinstance(primitive, QuantumCircuit):
            raise TypeError(
                "CircuitStateFn can only be instantiated "
                "with QuantumCircuit, not {}".format(type(primitive))
            )

        if len(primitive.clbits) != 0:
            raise TypeError("CircuitOp does not support QuantumCircuits with ClassicalRegisters.")

        super().__init__(primitive, coeff=coeff, is_measurement=is_measurement)

        self.from_operator = from_operator

    @staticmethod
    def from_dict(density_dict: dict) -> "CircuitStateFn":
        """Construct the CircuitStateFn from a dict mapping strings to probability densities.



        Args:

            density_dict: The dict representing the desired state.



        Returns:

            The CircuitStateFn created from the dict.

        """
        # If the dict is sparse (elements <= qubits), don't go
        # building a statevector to pass to Qiskit's
        # initializer, just create a sum.
        if len(density_dict) <= len(list(density_dict.keys())[0]):
            statefn_circuits = []
            for bstr, prob in density_dict.items():
                qc = QuantumCircuit(len(bstr))
                # NOTE: Reversing endianness!!
                for (index, bit) in enumerate(reversed(bstr)):
                    if bit == "1":
                        qc.x(index)
                sf_circuit = CircuitStateFn(qc, coeff=prob)
                statefn_circuits += [sf_circuit]
            if len(statefn_circuits) == 1:
                return statefn_circuits[0]
            else:
                return cast(CircuitStateFn, SummedOp(cast(List[OperatorBase], statefn_circuits)))
        else:
            sf_dict = StateFn(density_dict)
            return CircuitStateFn.from_vector(sf_dict.to_matrix())

    @staticmethod
    def from_vector(statevector: np.ndarray) -> "CircuitStateFn":
        """Construct the CircuitStateFn from a vector representing the statevector.



        Args:

            statevector: The statevector representing the desired state.



        Returns:

            The CircuitStateFn created from the vector.

        """
        normalization_coeff = np.linalg.norm(statevector)
        normalized_sv = statevector / normalization_coeff
        return CircuitStateFn(StatePreparation(normalized_sv), coeff=normalization_coeff)

    def primitive_strings(self) -> Set[str]:
        return {"QuantumCircuit"}

    @property
    def settings(self) -> Dict:
        """Return settings."""
        data = super().settings
        data["from_operator"] = self.from_operator
        return data

    @property
    def num_qubits(self) -> int:
        return self.primitive.num_qubits

    def add(self, other: OperatorBase) -> OperatorBase:
        if not self.num_qubits == other.num_qubits:
            raise ValueError(
                "Sum over operators with different numbers of qubits, "
                "{} and {}, is not well "
                "defined".format(self.num_qubits, other.num_qubits)
            )

        if isinstance(other, CircuitStateFn) and self.primitive == other.primitive:
            return CircuitStateFn(self.primitive, coeff=self.coeff + other.coeff)

        # Covers all else.
        return SummedOp([self, other])

    def adjoint(self) -> "CircuitStateFn":
        try:
            inverse = self.primitive.inverse()
        except CircuitError as missing_inverse:
            raise OpflowError(
                "Failed to take the inverse of the underlying circuit, the circuit "
                "is likely not unitary and can therefore not be inverted."
            ) from missing_inverse

        return CircuitStateFn(
            inverse, coeff=self.coeff.conjugate(), is_measurement=(not self.is_measurement)
        )

    def compose(

        self, other: OperatorBase, permutation: Optional[List[int]] = None, front: bool = False

    ) -> OperatorBase:
        if not self.is_measurement and not front:
            raise ValueError(
                "Composition with a Statefunctions in the first operand is not defined."
            )
        new_self, other = self._expand_shorter_operator_and_permute(other, permutation)
        new_self.from_operator = self.from_operator

        if front:
            return other.compose(new_self)

        if isinstance(other, (PauliOp, CircuitOp, MatrixOp)):
            op_circuit_self = CircuitOp(self.primitive)

            # Avoid reimplementing compose logic
            composed_op_circs = cast(CircuitOp, op_circuit_self.compose(other.to_circuit_op()))

            # Returning CircuitStateFn
            return CircuitStateFn(
                composed_op_circs.primitive,
                is_measurement=self.is_measurement,
                coeff=self.coeff * other.coeff,
                from_operator=self.from_operator,
            )

        if isinstance(other, CircuitStateFn) and self.is_measurement:
            # pylint: disable=cyclic-import
            from ..operator_globals import Zero

            return self.compose(CircuitOp(other.primitive)).compose(
                (Zero ^ self.num_qubits) * other.coeff
            )

        return ComposedOp([new_self, other])

    def tensor(self, other: OperatorBase) -> Union["CircuitStateFn", TensoredOp]:
        r"""

        Return tensor product between self and other, overloaded by ``^``.

        Note: You must be conscious of Qiskit's big-endian bit printing convention.

        Meaning, Plus.tensor(Zero)

        produces a \|+⟩ on qubit 0 and a \|0⟩ on qubit 1, or \|+⟩⨂\|0⟩, but would produce

        a QuantumCircuit like:



            \|0⟩--

            \|+⟩--



        Because Terra prints circuits and results with qubit 0 at the end of the string or circuit.



        Args:

            other: The ``OperatorBase`` to tensor product with self.



        Returns:

            An ``OperatorBase`` equivalent to the tensor product of self and other.

        """
        if isinstance(other, CircuitStateFn) and other.is_measurement == self.is_measurement:
            # Avoid reimplementing tensor, just use CircuitOp's
            c_op_self = CircuitOp(self.primitive, self.coeff)
            c_op_other = CircuitOp(other.primitive, other.coeff)
            c_op = c_op_self.tensor(c_op_other)
            if isinstance(c_op, CircuitOp):
                return CircuitStateFn(
                    primitive=c_op.primitive,
                    coeff=c_op.coeff,
                    is_measurement=self.is_measurement,
                )
        return TensoredOp([self, other])

    def to_density_matrix(self, massive: bool = False) -> np.ndarray:
        """

        Return numpy matrix of density operator, warn if more than 16 qubits to

        force the user to set

        massive=True if they want such a large matrix. Generally big methods like this

        should require the use of a

        converter, but in this case a convenience method for quick hacking and access

        to classical tools is

        appropriate.

        """
        OperatorBase._check_massive("to_density_matrix", True, self.num_qubits, massive)
        # Rely on VectorStateFn's logic here.
        return VectorStateFn(self.to_matrix(massive=massive) * self.coeff).to_density_matrix()

    def to_matrix(self, massive: bool = False) -> np.ndarray:
        OperatorBase._check_massive("to_matrix", False, self.num_qubits, massive)

        # Need to adjoint to get forward statevector and then reverse
        if self.is_measurement:
            return np.conj(self.adjoint().to_matrix(massive=massive))
        qc = self.to_circuit(meas=False)
        statevector_backend = BasicAer.get_backend("statevector_simulator")
        transpiled = transpile(qc, statevector_backend, optimization_level=0)
        statevector = statevector_backend.run(transpiled).result().get_statevector()
        from ..operator_globals import EVAL_SIG_DIGITS

        return np.round(statevector * self.coeff, decimals=EVAL_SIG_DIGITS)

    def __str__(self) -> str:
        qc = cast(CircuitStateFn, self.reduce()).to_circuit()
        prim_str = str(qc.draw(output="text"))
        if self.coeff == 1.0:
            return "{}(\n{}\n)".format(
                "CircuitStateFn" if not self.is_measurement else "CircuitMeasurement", prim_str
            )
        else:
            return "{}(\n{}\n) * {}".format(
                "CircuitStateFn" if not self.is_measurement else "CircuitMeasurement",
                prim_str,
                self.coeff,
            )

    def assign_parameters(self, param_dict: dict) -> Union["CircuitStateFn", ListOp]:
        param_value = self.coeff
        qc = self.primitive
        if isinstance(self.coeff, ParameterExpression) or self.primitive.parameters:
            unrolled_dict = self._unroll_param_dict(param_dict)
            if isinstance(unrolled_dict, list):
                return ListOp([self.assign_parameters(param_dict) for param_dict in unrolled_dict])
            if isinstance(self.coeff, ParameterExpression) and self.coeff.parameters <= set(
                unrolled_dict.keys()
            ):
                param_instersection = set(unrolled_dict.keys()) & self.coeff.parameters
                binds = {param: unrolled_dict[param] for param in param_instersection}
                param_value = float(self.coeff.bind(binds))
            # & is set intersection, check if any parameters in unrolled are present in circuit
            # This is different from bind_parameters in Terra because they check for set equality
            if set(unrolled_dict.keys()) & self.primitive.parameters:
                # Only bind the params found in the circuit
                param_instersection = set(unrolled_dict.keys()) & self.primitive.parameters
                binds = {param: unrolled_dict[param] for param in param_instersection}
                qc = self.to_circuit().assign_parameters(binds)
        return self.__class__(qc, coeff=param_value, is_measurement=self.is_measurement)

    def eval(

        self,

        front: Optional[

            Union[str, Dict[str, complex], np.ndarray, OperatorBase, Statevector]

        ] = None,

    ) -> Union[OperatorBase, complex]:
        if front is None:
            vector_state_fn = self.to_matrix_op().eval()
            return vector_state_fn

        if not self.is_measurement and isinstance(front, OperatorBase):
            raise ValueError(
                "Cannot compute overlap with StateFn or Operator if not Measurement. Try taking "
                "sf.adjoint() first to convert to measurement."
            )

        if isinstance(front, ListOp) and front.distributive:
            return front.combo_fn(
                [self.eval(front.coeff * front_elem) for front_elem in front.oplist]
            )

        # Composable with circuit
        if isinstance(front, (PauliOp, CircuitOp, MatrixOp, CircuitStateFn)):
            new_front = self.compose(front)
            return new_front.eval()

        return self.to_matrix_op().eval(front)

    def to_circuit(self, meas: bool = False) -> QuantumCircuit:
        """Return QuantumCircuit representing StateFn"""
        if meas:
            meas_qc = self.primitive.copy()
            meas_qc.add_register(ClassicalRegister(self.num_qubits))
            meas_qc.measure(qubit=range(self.num_qubits), cbit=range(self.num_qubits))
            return meas_qc
        else:
            return self.primitive

    def to_circuit_op(self) -> OperatorBase:
        """Return ``StateFnCircuit`` corresponding to this StateFn."""
        return self

    def to_instruction(self):
        """Return Instruction corresponding to primitive."""
        return self.primitive.to_instruction()

    # TODO specify backend?
    def sample(

        self, shots: int = 1024, massive: bool = False, reverse_endianness: bool = False

    ) -> dict:
        """

        Sample the state function as a normalized probability distribution. Returns dict of

        bitstrings in order of probability, with values being probability.

        """
        OperatorBase._check_massive("sample", False, self.num_qubits, massive)
        qc = self.to_circuit(meas=True)
        qasm_backend = BasicAer.get_backend("qasm_simulator")
        transpiled = transpile(qc, qasm_backend, optimization_level=0)
        counts = qasm_backend.run(transpiled, shots=shots).result().get_counts()
        if reverse_endianness:
            scaled_dict = {bstr[::-1]: (prob / shots) for (bstr, prob) in counts.items()}
        else:
            scaled_dict = {bstr: (prob / shots) for (bstr, prob) in counts.items()}
        return dict(sorted(scaled_dict.items(), key=lambda x: x[1], reverse=True))

    # Warning - modifying primitive!!
    def reduce(self) -> "CircuitStateFn":
        if self.primitive.data is not None:
            # Need to do this from the end because we're deleting items!
            for i in reversed(range(len(self.primitive.data))):
                gate = self.primitive.data[i].operation
                # Check if Identity or empty instruction (need to check that type is exactly
                # Instruction because some gates have lazy gate.definition population)
                # pylint: disable=unidiomatic-typecheck
                if isinstance(gate, IGate) or (
                    type(gate) == Instruction and gate.definition.data == []
                ):
                    del self.primitive.data[i]
        return self

    def _expand_dim(self, num_qubits: int) -> "CircuitStateFn":
        # this is equivalent to self.tensor(identity_operator), but optimized for better performance
        # just like in tensor method, qiskit endianness is reversed here
        return self.permute(list(range(num_qubits, num_qubits + self.num_qubits)))

    def permute(self, permutation: List[int]) -> "CircuitStateFn":
        r"""

        Permute the qubits of the circuit.



        Args:

            permutation: A list defining where each qubit should be permuted. The qubit at index

                j of the circuit should be permuted to position permutation[j].



        Returns:

            A new CircuitStateFn containing the permuted circuit.

        """
        new_qc = QuantumCircuit(max(permutation) + 1).compose(self.primitive, qubits=permutation)
        return CircuitStateFn(new_qc, coeff=self.coeff, is_measurement=self.is_measurement)