File size: 18,262 Bytes
b7d9967
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
# This code is part of Qiskit.
#
# (C) Copyright IBM 2020, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""PauliSumOp Class"""

from collections import defaultdict
from typing import Dict, List, Optional, Set, Tuple, Union, cast
import numpy as np
from scipy.sparse import spmatrix

from qiskit.circuit import Instruction, ParameterExpression
from qiskit.opflow.exceptions import OpflowError
from qiskit.opflow.list_ops.summed_op import SummedOp
from qiskit.opflow.list_ops.tensored_op import TensoredOp
from qiskit.opflow.operator_base import OperatorBase
from qiskit.opflow.primitive_ops.pauli_op import PauliOp
from qiskit.opflow.primitive_ops.primitive_op import PrimitiveOp
from qiskit.quantum_info import Pauli, SparsePauliOp, Statevector
from qiskit.quantum_info.operators.custom_iterator import CustomIterator
from qiskit.utils.deprecation import deprecate_func


class PauliSumOp(PrimitiveOp):
    """Deprecated: Class for Operators backed by Terra's ``SparsePauliOp`` class."""

    primitive: SparsePauliOp

    @deprecate_func(

        since="0.24.0",

        additional_msg="For code migration guidelines, visit https://qisk.it/opflow_migration.",

    )
    def __init__(

        self,

        primitive: SparsePauliOp,

        coeff: Union[complex, ParameterExpression] = 1.0,

        grouping_type: str = "None",

    ) -> None:
        """

        Args:

            primitive: The SparsePauliOp which defines the behavior of the underlying function.

            coeff: A coefficient multiplying the primitive.

            grouping_type: The type of grouping. If None, the operator is not grouped.



        Raises:

            TypeError: invalid parameters.

        """
        if not isinstance(primitive, SparsePauliOp):
            raise TypeError(
                f"PauliSumOp can only be instantiated with SparsePauliOp, not {type(primitive)}"
            )

        super().__init__(primitive, coeff=coeff)
        self._grouping_type = grouping_type

    def primitive_strings(self) -> Set[str]:
        return {"SparsePauliOp"}

    @property
    def grouping_type(self) -> str:
        """

        Returns: Type of Grouping

        """
        return self._grouping_type

    @property
    def num_qubits(self) -> int:
        return self.primitive.num_qubits

    @property
    def coeffs(self):
        """Return the Pauli coefficients."""
        return self.coeff * self.primitive.coeffs

    @property
    def settings(self) -> Dict:
        """Return operator settings."""
        data = super().settings
        data.update({"grouping_type": self._grouping_type})
        return data

    def matrix_iter(self, sparse=False):
        """Return a matrix representation iterator.



        This is a lazy iterator that converts each term in the PauliSumOp

        into a matrix as it is used. To convert to a single matrix use the

        :meth:`to_matrix` method.



        Args:

            sparse (bool): optionally return sparse CSR matrices if True,

                           otherwise return Numpy array matrices

                           (Default: False)



        Returns:

            MatrixIterator: matrix iterator object for the PauliSumOp.

        """

        class MatrixIterator(CustomIterator):
            """Matrix representation iteration and item access."""

            def __repr__(self):
                return f"<PauliSumOp_matrix_iterator at {hex(id(self))}>"

            def __getitem__(self, key):
                sumopcoeff = self.obj.coeff * self.obj.primitive.coeffs[key]
                return sumopcoeff * self.obj.primitive.paulis[key].to_matrix(sparse=sparse)

        return MatrixIterator(self)

    def add(self, other: OperatorBase) -> OperatorBase:
        if not self.num_qubits == other.num_qubits:
            raise ValueError(
                f"Sum of operators with different numbers of qubits, {self.num_qubits} and "
                f"{other.num_qubits}, is not well defined"
            )

        if (
            isinstance(other, PauliSumOp)
            and not isinstance(self.coeff, ParameterExpression)
            and not isinstance(other.coeff, ParameterExpression)
        ):
            return PauliSumOp(self.coeff * self.primitive + other.coeff * other.primitive, coeff=1)

        if (
            isinstance(other, PauliOp)
            and not isinstance(self.coeff, ParameterExpression)
            and not isinstance(other.coeff, ParameterExpression)
        ):
            return PauliSumOp(
                self.coeff * self.primitive + other.coeff * SparsePauliOp(other.primitive)
            )

        return SummedOp([self, other])

    def mul(self, scalar: Union[complex, ParameterExpression]) -> OperatorBase:
        if isinstance(scalar, (int, float, complex)) and scalar != 0:
            return PauliSumOp(scalar * self.primitive, coeff=self.coeff)

        return PauliSumOp(self.primitive, coeff=self.coeff * scalar)

    def adjoint(self) -> "PauliSumOp":
        return PauliSumOp(self.primitive.adjoint(), coeff=self.coeff.conjugate())

    def equals(self, other: OperatorBase) -> bool:
        self_reduced, other_reduced = self.reduce(), other.reduce()

        if isinstance(other_reduced, PauliOp):
            other_reduced = PauliSumOp(
                SparsePauliOp(other_reduced.primitive, coeffs=[other_reduced.coeff])
            )

        if not isinstance(other_reduced, PauliSumOp):
            return False

        if isinstance(self_reduced.coeff, ParameterExpression) or isinstance(
            other_reduced.coeff, ParameterExpression
        ):
            return self_reduced.coeff == other_reduced.coeff and self_reduced.primitive.equiv(
                other_reduced.primitive
            )
        return len(self_reduced) == len(other_reduced) and self_reduced.primitive.equiv(
            other_reduced.primitive
        )

    def _expand_dim(self, num_qubits: int) -> "PauliSumOp":
        return PauliSumOp(
            self.primitive.tensor(SparsePauliOp(Pauli("I" * num_qubits))),
            coeff=self.coeff,
        )

    def tensor(self, other: OperatorBase) -> Union["PauliSumOp", TensoredOp]:
        if isinstance(other, PauliSumOp):
            return PauliSumOp(
                self.primitive.tensor(other.primitive),
                coeff=self.coeff * other.coeff,
            )
        if isinstance(other, PauliOp):
            return PauliSumOp(
                self.primitive.tensor(other.primitive),
                coeff=self.coeff * other.coeff,
            )

        return TensoredOp([self, other])

    def permute(self, permutation: List[int]) -> "PauliSumOp":
        """Permutes the sequence of ``PauliSumOp``.



        Args:

            permutation: A list defining where each Pauli should be permuted. The Pauli at index

                j of the primitive should be permuted to position permutation[j].



        Returns:

              A new PauliSumOp representing the permuted operator. For operator (X ^ Y ^ Z) and

              indices=[1,2,4], it returns (X ^ I ^ Y ^ Z ^ I).



        Raises:

            OpflowError: if indices do not define a new index for each qubit.

        """
        set_perm = set(permutation)
        if len(set_perm) != len(permutation) or any(index < 0 for index in set_perm):
            raise OpflowError(f"List {permutation} is not a permutation.")

        if len(permutation) != self.num_qubits:
            raise OpflowError(
                "List of indices to permute must have the same size as Pauli Operator"
            )
        length = max(permutation) + 1

        if length > self.num_qubits:
            spop = self.primitive.tensor(SparsePauliOp(Pauli("I" * (length - self.num_qubits))))
        else:
            spop = self.primitive.copy()

        permutation = [i for i in range(length) if i not in permutation] + permutation
        permu_arr = np.arange(length)[np.argsort(permutation)]
        spop.paulis.x = spop.paulis.x[:, permu_arr]
        spop.paulis.z = spop.paulis.z[:, permu_arr]
        return PauliSumOp(spop, self.coeff)

    def compose(

        self,

        other: OperatorBase,

        permutation: Optional[List[int]] = None,

        front: bool = False,

    ) -> OperatorBase:

        new_self, other = self._expand_shorter_operator_and_permute(other, permutation)
        new_self = cast(PauliSumOp, new_self)

        if front:
            return other.compose(new_self)
        # If self is identity, just return other.
        if not np.any(np.logical_or(new_self.primitive.paulis.x, new_self.primitive.paulis.z)):
            return other * new_self.coeff * sum(new_self.primitive.coeffs)

        # Both PauliSumOps
        if isinstance(other, PauliSumOp):
            return PauliSumOp(
                new_self.primitive.dot(other.primitive),
                coeff=new_self.coeff * other.coeff,
            )
        if isinstance(other, PauliOp):
            other_primitive = SparsePauliOp(other.primitive)
            return PauliSumOp(
                new_self.primitive.dot(other_primitive),
                coeff=new_self.coeff * other.coeff,
            )

        # pylint: disable=cyclic-import
        from ..state_fns.circuit_state_fn import CircuitStateFn
        from .circuit_op import CircuitOp

        if isinstance(other, (CircuitOp, CircuitStateFn)):
            pauli_op = cast(Union[PauliOp, SummedOp], new_self.to_pauli_op())
            return pauli_op.to_circuit_op().compose(other)

        return super(PauliSumOp, new_self).compose(other)

    def to_matrix(self, massive: bool = False) -> np.ndarray:
        OperatorBase._check_massive("to_matrix", True, self.num_qubits, massive)
        if isinstance(self.coeff, ParameterExpression):
            return (self.primitive.to_matrix(sparse=True)).toarray() * self.coeff
        return (self.primitive.to_matrix(sparse=True) * self.coeff).toarray()

    def __str__(self) -> str:
        def format_sign(x):
            return x.real if np.isreal(x) else x

        def format_number(x):
            x = format_sign(x)
            if isinstance(x, (int, float)) and x < 0:
                return f"- {-x}"
            return f"+ {x}"

        indent = "" if self.coeff == 1 else "  "
        prim_list = self.primitive.to_list()
        if prim_list:
            first = prim_list[0]
            if isinstance(first[1], (int, float)) and first[1] < 0:
                main_string = indent + f"- {-first[1].real} * {first[0]}"
            else:
                main_string = indent + f"{format_sign(first[1])} * {first[0]}"

        main_string += "".join([f"\n{indent}{format_number(c)} * {p}" for p, c in prim_list[1:]])
        return f"{main_string}" if self.coeff == 1 else f"{self.coeff} * (\n{main_string}\n)"

    def eval(

        self,

        front: Optional[

            Union[str, Dict[str, complex], np.ndarray, OperatorBase, Statevector]

        ] = None,

    ) -> Union[OperatorBase, complex]:
        if front is None:
            return self.to_matrix_op()

        # pylint: disable=cyclic-import
        from ..list_ops.list_op import ListOp
        from ..state_fns.circuit_state_fn import CircuitStateFn
        from ..state_fns.dict_state_fn import DictStateFn
        from ..state_fns.state_fn import StateFn
        from .circuit_op import CircuitOp

        # For now, always do this. If it's not performant, we can be more granular.
        if not isinstance(front, OperatorBase):
            front = StateFn(front, is_measurement=False)

        if isinstance(front, ListOp) and front.distributive:
            return front.combo_fn(
                [self.eval(front.coeff * front_elem) for front_elem in front.oplist]
            )

        else:

            if self.num_qubits != front.num_qubits:
                raise ValueError(
                    "eval does not support operands with differing numbers of qubits, "
                    "{} and {}, respectively.".format(self.num_qubits, front.num_qubits)
                )

            if isinstance(front, DictStateFn):
                new_dict: Dict[str, int] = defaultdict(int)
                corrected_x_bits = self.primitive.paulis.x[:, ::-1]
                corrected_z_bits = self.primitive.paulis.z[:, ::-1]
                coeffs = self.primitive.coeffs
                for bstr, v in front.primitive.items():
                    bitstr = np.fromiter(bstr, dtype=int).astype(bool)
                    new_b_str = np.logical_xor(bitstr, corrected_x_bits)
                    new_str = ["".join([str(b) for b in bs]) for bs in new_b_str.astype(int)]
                    z_factor = np.prod(1 - 2 * np.logical_and(bitstr, corrected_z_bits), axis=1)
                    y_factor = np.prod(
                        np.sqrt(1 - 2 * np.logical_and(corrected_x_bits, corrected_z_bits) + 0j),
                        axis=1,
                    )
                    for i, n_str in enumerate(new_str):
                        new_dict[n_str] += v * z_factor[i] * y_factor[i] * coeffs[i]
                return DictStateFn(new_dict, coeff=self.coeff * front.coeff)

            elif isinstance(front, StateFn) and front.is_measurement:
                raise ValueError("Operator composed with a measurement is undefined.")

            # Composable types with PauliOp
            elif isinstance(front, (PauliSumOp, PauliOp, CircuitOp, CircuitStateFn)):
                return self.compose(front).eval()

        # Covers VectorStateFn and OperatorStateFn
        front = cast(StateFn, front)
        return self.to_matrix_op().eval(front.to_matrix_op())

    def exp_i(self) -> OperatorBase:
        """Return a ``CircuitOp`` equivalent to e^-iH for this operator H."""
        # TODO: optimize for some special cases
        from ..evolutions.evolved_op import EvolvedOp

        return EvolvedOp(self)

    def to_instruction(self) -> Instruction:
        return self.to_matrix_op().to_circuit().to_instruction()  # type: ignore

    def to_pauli_op(self, massive: bool = False) -> Union[PauliOp, SummedOp]:
        def to_native(x):
            return x.item() if isinstance(x, np.generic) else x

        if len(self.primitive) == 1:
            return PauliOp(
                Pauli((self.primitive.paulis.z[0], self.primitive.paulis.x[0])),
                to_native(np.real_if_close(self.primitive.coeffs[0])) * self.coeff,
            )
        coeffs = np.real_if_close(self.primitive.coeffs)
        return SummedOp(
            [
                PauliOp(pauli, to_native(coeff))
                for pauli, coeff in zip(self.primitive.paulis, coeffs)
            ],
            coeff=self.coeff,
        )

    def __getitem__(self, offset: Union[int, slice]) -> "PauliSumOp":
        """Allows array-indexing style access to the ``PauliSumOp``.



        Args:

            offset: The index of ``PauliSumOp``.



        Returns:

            The ``PauliSumOp`` at index ``offset``,

        """
        return PauliSumOp(self.primitive[offset], self.coeff)

    def __iter__(self):
        for i in range(len(self)):
            yield self[i]

    def __len__(self) -> int:
        """Length of ``SparsePauliOp``.



        Returns:

            An int equal to the length of SparsePauliOp.

        """
        return len(self.primitive)

    def reduce(self, atol: Optional[float] = None, rtol: Optional[float] = None) -> "PauliSumOp":
        """Simplify the primitive ``SparsePauliOp``.



        Args:

            atol: Absolute tolerance for checking if coefficients are zero (Default: 1e-8).

            rtol: Relative tolerance for checking if coefficients are zero (Default: 1e-5).



        Returns:

            The simplified ``PauliSumOp``.

        """
        if isinstance(self.coeff, (int, float, complex)):
            primitive = self.coeff * self.primitive
            return PauliSumOp(primitive.simplify(atol=atol, rtol=rtol))
        return PauliSumOp(self.primitive.simplify(atol=atol, rtol=rtol), self.coeff)

    def to_spmatrix(self) -> spmatrix:
        """Returns SciPy sparse matrix representation of the ``PauliSumOp``.



        Returns:

            CSR sparse matrix representation of the ``PauliSumOp``.



        Raises:

            ValueError: invalid parameters.

        """
        return self.primitive.to_matrix(sparse=True) * self.coeff

    @classmethod
    def from_list(

        cls,

        pauli_list: List[Tuple[str, Union[complex, ParameterExpression]]],

        coeff: Union[complex, ParameterExpression] = 1.0,

        dtype: type = complex,

    ) -> "PauliSumOp":
        """Construct from a pauli_list with the form [(pauli_str, coeffs)]



        Args:

            pauli_list: A list of Tuple of pauli_str and coefficient.

            coeff: A coefficient multiplying the primitive.

            dtype: The dtype to use to construct the internal SparsePauliOp.

                Defaults to ``complex``.



        Returns:

            The PauliSumOp constructed from the pauli_list.

        """
        return cls(SparsePauliOp.from_list(pauli_list, dtype=dtype), coeff=coeff)

    def is_zero(self) -> bool:
        """

        Return this operator is zero operator or not.

        """
        op = self.reduce()
        primitive: SparsePauliOp = op.primitive
        return op.coeff == 1 and len(op) == 1 and primitive.coeffs[0] == 0

    def is_hermitian(self):
        return np.isreal(self.coeffs).all() and np.all(self.primitive.paulis.phase == 0)