File size: 21,038 Bytes
b7d9967
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
# This code is part of Qiskit.
#
# (C) Copyright IBM 2020, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""OperatorBase Class"""

import itertools
from abc import ABC, abstractmethod
from copy import deepcopy
from typing import Dict, List, Optional, Set, Tuple, Union, cast

import numpy as np
from scipy.sparse import csr_matrix, spmatrix

from qiskit.circuit import ParameterExpression, ParameterVector
from qiskit.opflow.exceptions import OpflowError
from qiskit.opflow.mixins import StarAlgebraMixin, TensorMixin
from qiskit.quantum_info import Statevector
from qiskit.utils import algorithm_globals
from qiskit.utils.deprecation import deprecate_func


class OperatorBase(StarAlgebraMixin, TensorMixin, ABC):
    """Deprecated: A base class for all Operators: PrimitiveOps, StateFns, ListOps, etc. Operators are

    defined as functions which take one complex binary function to another. These complex binary

    functions are represented by StateFns, which are themselves a special class of Operators

    taking only the ``Zero`` StateFn to the complex binary function they represent.



    Operators can be used to construct complicated functions and computation, and serve as the

    building blocks for algorithms.



    """

    # Indentation used in string representation of list operators
    # Can be changed to use another indentation than two whitespaces
    INDENTATION = "  "

    _count = itertools.count()

    @deprecate_func(

        since="0.24.0",

        additional_msg="For code migration guidelines, visit https://qisk.it/opflow_migration.",

    )
    def __init__(self) -> None:
        super().__init__()
        self._instance_id = next(self._count)

    @property
    @abstractmethod
    def settings(self) -> Dict:
        """Return settings of this object in a dictionary.



        You can, for example, use this ``settings`` dictionary to serialize the

        object in JSON format, if the JSON encoder you use supports all types in

        the dictionary.



        Returns:

            Object settings in a dictionary.

        """
        raise NotImplementedError

    @property
    def instance_id(self) -> int:
        """Return the unique instance id."""
        return self._instance_id

    @property
    @abstractmethod
    def num_qubits(self) -> int:
        r"""The number of qubits over which the Operator is defined. If

        ``op.num_qubits == 5``, then ``op.eval('1' * 5)`` will be valid, but

        ``op.eval('11')`` will not.



        Returns:

            The number of qubits accepted by the Operator's underlying function.

        """
        raise NotImplementedError

    @abstractmethod
    def primitive_strings(self) -> Set[str]:
        r"""Return a set of strings describing the primitives contained in the Operator. For

        example, ``{'QuantumCircuit', 'Pauli'}``. For hierarchical Operators, such as ``ListOps``,

        this can help illuminate the primitives represented in the various recursive levels,

        and therefore which conversions can be applied.



        Returns:

            A set of strings describing the primitives contained within the Operator.

        """
        raise NotImplementedError

    @abstractmethod
    def eval(

        self,

        front: Optional[

            Union[str, Dict[str, complex], np.ndarray, "OperatorBase", Statevector]

        ] = None,

    ) -> Union["OperatorBase", complex]:
        r"""

        Evaluate the Operator's underlying function, either on a binary string or another Operator.

        A square binary Operator can be defined as a function taking a binary function to another

        binary function. This method returns the value of that function for a given StateFn or

        binary string. For example, ``op.eval('0110').eval('1110')`` can be seen as querying the

        Operator's matrix representation by row 6 and column 14, and will return the complex

        value at those "indices." Similarly for a StateFn, ``op.eval('1011')`` will return the

        complex value at row 11 of the vector representation of the StateFn, as all StateFns are

        defined to be evaluated from Zero implicitly (i.e. it is as if ``.eval('0000')`` is already

        called implicitly to always "indexing" from column 0).



        If ``front`` is None, the matrix-representation of the operator is returned.



        Args:

            front: The bitstring, dict of bitstrings (with values being coefficients), or

                StateFn to evaluated by the Operator's underlying function, or None.



        Returns:

            The output of the Operator's evaluation function. If self is a ``StateFn``, the result

            is a float or complex. If self is an Operator (``PrimitiveOp, ComposedOp, SummedOp,

            EvolvedOp,`` etc.), the result is a StateFn.

            If ``front`` is None, the matrix-representation of the operator is returned, which

            is a ``MatrixOp`` for the operators and a ``VectorStateFn`` for state-functions.

            If either self or front contain proper

            ``ListOps`` (not ListOp subclasses), the result is an n-dimensional list of complex

            or StateFn results, resulting from the recursive evaluation by each OperatorBase

            in the ListOps.



        """
        raise NotImplementedError

    @abstractmethod
    def reduce(self):
        r"""Try collapsing the Operator structure, usually after some type of conversion,

        e.g. trying to add Operators in a SummedOp or delete needless IGates in a CircuitOp.

        If no reduction is available, just returns self.



        Returns:

            The reduced ``OperatorBase``.

        """
        raise NotImplementedError

    @abstractmethod
    def to_matrix(self, massive: bool = False) -> np.ndarray:
        r"""Return NumPy representation of the Operator. Represents the evaluation of

        the Operator's underlying function on every combination of basis binary strings.

        Warn if more than 16 qubits to force having to set ``massive=True`` if such a

        large vector is desired.



        Returns:

              The NumPy ``ndarray`` equivalent to this Operator.

        """
        raise NotImplementedError

    @abstractmethod
    def to_matrix_op(self, massive: bool = False) -> "OperatorBase":
        """Returns a ``MatrixOp`` equivalent to this Operator."""
        raise NotImplementedError

    @abstractmethod
    def to_circuit_op(self) -> "OperatorBase":
        """Returns a ``CircuitOp`` equivalent to this Operator."""
        raise NotImplementedError

    def to_spmatrix(self) -> spmatrix:
        r"""Return SciPy sparse matrix representation of the Operator. Represents the evaluation of

        the Operator's underlying function on every combination of basis binary strings.



        Returns:

              The SciPy ``spmatrix`` equivalent to this Operator.

        """
        return csr_matrix(self.to_matrix())

    def is_hermitian(self) -> bool:
        """Return True if the operator is hermitian.



        Returns: Boolean value

        """
        return (self.to_spmatrix() != self.to_spmatrix().getH()).nnz == 0

    @staticmethod
    def _indent(lines: str, indentation: str = INDENTATION) -> str:
        """Indented representation to allow pretty representation of nested operators."""
        indented_str = indentation + lines.replace("\n", f"\n{indentation}")
        if indented_str.endswith(f"\n{indentation}"):
            indented_str = indented_str[: -len(indentation)]
        return indented_str

    # Addition / Subtraction

    @abstractmethod
    def add(self, other: "OperatorBase") -> "OperatorBase":
        r"""Return Operator addition of self and other, overloaded by ``+``.



        Args:

            other: An ``OperatorBase`` with the same number of qubits as self, and in the same

                'Operator', 'State function', or 'Measurement' category as self (i.e. the same type

                of underlying function).



        Returns:

            An ``OperatorBase`` equivalent to the sum of self and other.

        """
        raise NotImplementedError

    # Negation

    def neg(self) -> "OperatorBase":
        r"""Return the Operator's negation, effectively just multiplying by -1.0,

        overloaded by ``-``.



        Returns:

            An ``OperatorBase`` equivalent to the negation of self.

        """
        return self.mul(-1.0)

    # Adjoint

    @abstractmethod
    def adjoint(self) -> "OperatorBase":
        r"""Return a new Operator equal to the Operator's adjoint (conjugate transpose),

        overloaded by ``~``. For StateFns, this also turns the StateFn into a measurement.



        Returns:

            An ``OperatorBase`` equivalent to the adjoint of self.

        """
        raise NotImplementedError

    # Equality

    def __eq__(self, other: object) -> bool:
        r"""Overload ``==`` operation to evaluate equality between Operators.



        Args:

            other: The ``OperatorBase`` to compare to self.



        Returns:

            A bool equal to the equality of self and other.

        """
        if not isinstance(other, OperatorBase):
            return NotImplemented
        return self.equals(cast(OperatorBase, other))

    @abstractmethod
    def equals(self, other: "OperatorBase") -> bool:
        r"""

        Evaluate Equality between Operators, overloaded by ``==``. Only returns True if self and

        other are of the same representation (e.g. a DictStateFn and CircuitStateFn will never be

        equal, even if their vector representations are equal), their underlying primitives are

        equal (this means for ListOps, OperatorStateFns, or EvolvedOps the equality is evaluated

        recursively downwards), and their coefficients are equal.



        Args:

            other: The ``OperatorBase`` to compare to self.



        Returns:

            A bool equal to the equality of self and other.



        """
        raise NotImplementedError

    # Scalar Multiplication

    @abstractmethod
    def mul(self, scalar: Union[complex, ParameterExpression]) -> "OperatorBase":
        r"""

        Returns the scalar multiplication of the Operator, overloaded by ``*``, including

        support for Terra's ``Parameters``, which can be bound to values later (via

        ``bind_parameters``).



        Args:

            scalar: The real or complex scalar by which to multiply the Operator,

                or the ``ParameterExpression`` to serve as a placeholder for a scalar factor.



        Returns:

            An ``OperatorBase`` equivalent to product of self and scalar.

        """
        raise NotImplementedError

    @abstractmethod
    def tensor(self, other: "OperatorBase") -> "OperatorBase":
        r"""Return tensor product between self and other, overloaded by ``^``.

        Note: You must be conscious of Qiskit's big-endian bit printing convention.

        Meaning, X.tensor(Y) produces an X on qubit 0 and an Y on qubit 1, or X⨂Y,

        but would produce a QuantumCircuit which looks like



            -[Y]-

            -[X]-



        Because Terra prints circuits and results with qubit 0 at the end of the string

        or circuit.



        Args:

            other: The ``OperatorBase`` to tensor product with self.



        Returns:

            An ``OperatorBase`` equivalent to the tensor product of self and other.

        """
        raise NotImplementedError

    @abstractmethod
    def tensorpower(self, other: int) -> Union["OperatorBase", int]:
        r"""Return tensor product with self multiple times, overloaded by ``^``.



        Args:

            other: The int number of times to tensor product self with itself via ``tensorpower``.



        Returns:

            An ``OperatorBase`` equivalent to the tensorpower of self by other.

        """
        raise NotImplementedError

    @property
    @abstractmethod
    def parameters(self):
        r"""Return a set of Parameter objects contained in the Operator."""
        raise NotImplementedError

    # Utility functions for parameter binding

    @abstractmethod
    def assign_parameters(

        self,

        param_dict: Dict[

            ParameterExpression,

            Union[complex, ParameterExpression, List[Union[complex, ParameterExpression]]],

        ],

    ) -> "OperatorBase":
        """Binds scalar values to any Terra ``Parameters`` in the coefficients or primitives of

        the Operator, or substitutes one ``Parameter`` for another. This method differs from

        Terra's ``assign_parameters`` in that it also supports lists of values to assign for a

        give ``Parameter``, in which case self will be copied for each parameterization in the

        binding list(s), and all the copies will be returned in an ``OpList``. If lists of

        parameterizations are used, every ``Parameter`` in the param_dict must have the same

        length list of parameterizations.



        Args:

            param_dict: The dictionary of ``Parameters`` to replace, and values or lists of

                values by which to replace them.



        Returns:

            The ``OperatorBase`` with the ``Parameters`` in self replaced by the

            values or ``Parameters`` in param_dict. If param_dict contains parameterization lists,

            this ``OperatorBase`` is an ``OpList``.

        """
        raise NotImplementedError

    @abstractmethod
    def _expand_dim(self, num_qubits: int) -> "OperatorBase":
        """Expands the operator with identity operator of dimension 2**num_qubits.



        Returns:

            Operator corresponding to self.tensor(identity_operator), where dimension of identity

            operator is 2 ** num_qubits.

        """
        raise NotImplementedError

    @abstractmethod
    def permute(self, permutation: List[int]) -> "OperatorBase":
        """Permutes the qubits of the operator.



        Args:

            permutation: A list defining where each qubit should be permuted. The qubit at index

                j should be permuted to position permutation[j].



        Returns:

            A new OperatorBase containing the permuted operator.



        Raises:

            OpflowError: if indices do not define a new index for each qubit.

        """
        raise NotImplementedError

    def bind_parameters(

        self,

        param_dict: Dict[

            ParameterExpression,

            Union[complex, ParameterExpression, List[Union[complex, ParameterExpression]]],

        ],

    ) -> "OperatorBase":
        r"""

        Same as assign_parameters, but maintained for consistency with QuantumCircuit in

        Terra (which has both assign_parameters and bind_parameters).

        """
        return self.assign_parameters(param_dict)

    # Mostly copied from terra, but with list unrolling added:
    @staticmethod
    def _unroll_param_dict(

        value_dict: Dict[Union[ParameterExpression, ParameterVector], Union[complex, List[complex]]]

    ) -> Union[Dict[ParameterExpression, complex], List[Dict[ParameterExpression, complex]]]:
        """Unrolls the ParameterVectors in a param_dict into separate Parameters, and unrolls

        parameterization value lists into separate param_dicts without list nesting."""
        unrolled_value_dict = {}
        for (param, value) in value_dict.items():
            if isinstance(param, ParameterExpression):
                unrolled_value_dict[param] = value
            if isinstance(param, ParameterVector) and isinstance(value, (list, np.ndarray)):
                if not len(param) == len(value):
                    raise ValueError(
                        "ParameterVector {} has length {}, which differs from value list {} of "
                        "len {}".format(param, len(param), value, len(value))
                    )
                unrolled_value_dict.update(zip(param, value))
        if isinstance(list(unrolled_value_dict.values())[0], list):
            # check that all are same length
            unrolled_value_dict_list = []
            try:
                for i in range(len(list(unrolled_value_dict.values())[0])):  # type: ignore
                    unrolled_value_dict_list.append(
                        OperatorBase._get_param_dict_for_index(
                            unrolled_value_dict, i  # type: ignore
                        )
                    )
                return unrolled_value_dict_list
            except IndexError as ex:
                raise OpflowError("Parameter binding lists must all be the same length.") from ex
        return unrolled_value_dict  # type: ignore

    @staticmethod
    def _get_param_dict_for_index(unrolled_dict: Dict[ParameterExpression, List[complex]], i: int):
        """Gets a single non-list-nested param_dict for a given list index from a nested one."""
        return {k: v[i] for (k, v) in unrolled_dict.items()}

    def _expand_shorter_operator_and_permute(

        self, other: "OperatorBase", permutation: Optional[List[int]] = None

    ) -> Tuple["OperatorBase", "OperatorBase"]:
        if permutation is not None:
            other = other.permute(permutation)
        new_self = self
        if not self.num_qubits == other.num_qubits:
            # pylint: disable=cyclic-import
            from .operator_globals import Zero

            if other == Zero:
                # Zero is special - we'll expand it to the correct qubit number.
                other = Zero.__class__("0" * self.num_qubits)
            elif other.num_qubits < self.num_qubits:
                other = other._expand_dim(self.num_qubits - other.num_qubits)
            elif other.num_qubits > self.num_qubits:
                new_self = self._expand_dim(other.num_qubits - self.num_qubits)
        return new_self, other

    def copy(self) -> "OperatorBase":
        """Return a deep copy of the Operator."""
        return deepcopy(self)

    # Composition

    @abstractmethod
    def compose(

        self, other: "OperatorBase", permutation: Optional[List[int]] = None, front: bool = False

    ) -> "OperatorBase":
        r"""Return Operator Composition between self and other (linear algebra-style:

        A@B(x) = A(B(x))), overloaded by ``@``.



        Note: You must be conscious of Quantum Circuit vs. Linear Algebra ordering

        conventions. Meaning, X.compose(Y)

        produces an X∘Y on qubit 0, but would produce a QuantumCircuit which looks like



            -[Y]-[X]-



        Because Terra prints circuits with the initial state at the left side of the circuit.



        Args:

            other: The ``OperatorBase`` with which to compose self.

            permutation: ``List[int]`` which defines permutation on other operator.

            front: If front==True, return ``other.compose(self)``.



        Returns:

            An ``OperatorBase`` equivalent to the function composition of self and other.

        """
        raise NotImplementedError

    @staticmethod
    def _check_massive(method: str, matrix: bool, num_qubits: int, massive: bool) -> None:
        """

        Checks if matrix or vector generated will be too large.



        Args:

            method: Name of the calling method

            matrix: True if object is matrix, otherwise vector

            num_qubits: number of qubits

            massive: True if it is ok to proceed with large matrix



        Raises:

            ValueError: Massive is False and number of qubits is greater than 16

        """
        if num_qubits > 16 and not massive and not algorithm_globals.massive:
            dim = 2**num_qubits
            if matrix:
                obj_type = "matrix"
                dimensions = f"{dim}x{dim}"
            else:
                obj_type = "vector"
                dimensions = f"{dim}"
            raise ValueError(
                f"'{method}' will return an exponentially large {obj_type}, "
                f"in this case '{dimensions}' elements. "
                "Set algorithm_globals.massive=True or the method argument massive=True "
                "if you want to proceed."
            )

    # Printing

    @abstractmethod
    def __str__(self) -> str:
        raise NotImplementedError