File size: 7,404 Bytes
b7d9967
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# This code is part of Qiskit.
#
# (C) Copyright IBM 2018, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Utils for the Maximum-Likelihood estimation used in ``AmplitudeEstimation``."""

import logging
import numpy as np

logger = logging.getLogger(__name__)

# pylint: disable=invalid-name


def bisect_max(f, a, b, steps=50, minwidth=1e-12, retval=False):
    """Find the maximum of the real-valued function f in the interval [a, b] using bisection.



    Args:

        f (callable): the function to find the maximum of

        a (float): the lower limit of the interval

        b (float): the upper limit of the interval

        steps (int): the maximum number of steps in the bisection

        minwidth (float): if the current interval is smaller than minwidth stop

            the search

        retval (bool): return value



    Returns:

        float: The maximum of f in [a,b] according to this algorithm.

    """
    it = 0
    m = (a + b) / 2
    fm = 0
    while it < steps and b - a > minwidth:
        l, r = (a + m) / 2, (m + b) / 2
        fl, fm, fr = f(l), f(m), f(r)

        # fl is the maximum
        if fl > fm and fl > fr:
            b = m
            m = l
        # fr is the maximum
        elif fr > fm and fr > fl:
            a = m
            m = r
        # fm is the maximum
        else:
            a = l
            b = r

        it += 1

    if it == steps:
        logger.warning("-- Warning, bisect_max didn't converge after %s steps", steps)

    if retval:
        return m, fm

    return m


def _circ_dist(x, p):
    r"""Circumferential distance function.



    For two angles :math:`x` and :math:`p` on the unit circuit this function is defined as



    .. math::



            d(x, p) = \min_{z \in [-1, 0, 1]} |z + p - x|



    Args:

        x (float): first angle

        p (float): second angle



    Returns:

        float: d(x, p)

    """
    t = p - x
    # Since x and p \in [0,1] it suffices to check not all integers
    # but only -1, 0 and 1
    z = np.array([-1, 0, 1])

    if hasattr(t, "__len__"):
        d = np.empty_like(t)
        for idx, ti in enumerate(t):
            d[idx] = np.min(np.abs(z + ti))
        return d

    return np.min(np.abs(z + t))


def _derivative_circ_dist(x, p):
    """Derivative of circumferential distance function.



    Args:

        x (float): first angle

        p (float): second angle



    Returns:

        float: The derivative.

    """
    # pylint: disable=chained-comparison,misplaced-comparison-constant
    t = p - x
    if t < -0.5 or (0 < t and t < 0.5):
        return -1
    if t > 0.5 or (-0.5 < t and t < 0):
        return 1
    return 0


def _amplitude_to_angle(a):
    r"""Transform from the amplitude :math:`a \in [0, 1]` to the generating angle.



    In QAE, the amplitude can be written from a generating angle :math:`\omega` as



    .. math:



        a = \sin^2(\pi \omega)



    This returns the :math:`\omega` for a given :math:`a`.



    Args:

        a (float): A value in :math:`[0,1]`.



    Returns:

        float: :math:`\sin^{-1}(\sqrt{a}) / \pi`

    """
    return np.arcsin(np.sqrt(a)) / np.pi


def _derivative_amplitude_to_angle(a):
    """Compute the derivative of ``amplitude_to_angle``."""
    return 1 / (2 * np.pi * np.sqrt((1 - a) * a))


def _alpha(x, p):
    """Helper function for `pdf_a`, alpha = pi * d(omega(x), omega(p)).



    Here, omega(x) is `_amplitude_to_angle(x)`.

    """
    omega = _amplitude_to_angle
    return np.pi * _circ_dist(omega(x), omega(p))


def _derivative_alpha(x, p):
    """Compute the derivative of alpha."""
    omega = _amplitude_to_angle
    d_omega = _derivative_amplitude_to_angle
    return np.pi * _derivative_circ_dist(omega(x), omega(p)) * d_omega(p)


def _beta(x, p):
    """Helper function for `pdf_a`, beta = pi * d(1 - omega(x), omega(p))."""
    omega = _amplitude_to_angle
    return np.pi * _circ_dist(1 - omega(x), omega(p))


def _derivative_beta(x, p):
    """Compute the derivative of beta."""
    omega = _amplitude_to_angle
    d_omega = _derivative_amplitude_to_angle
    return np.pi * _derivative_circ_dist(1 - omega(x), omega(p)) * d_omega(p)


def _pdf_a_single_angle(x, p, m, pi_delta):
    """Helper function for `pdf_a`."""
    M = 2**m

    d = pi_delta(x, p)
    res = np.sin(M * d) ** 2 / (M * np.sin(d)) ** 2 if d != 0 else 1

    return res


def pdf_a(x, p, m):
    """

    Return the PDF of a, i.e. the probability of getting the estimate x

    (in [0, 1]) if p (in [0, 1]) is the true value, given that we use m qubits.



    Args:

        x (float): the grid point

        p (float): the true value

        m (float): the number of evaluation qubits



    Returns:

        float: PDF(x|p)

    """
    # We'll use list comprehension, so the input should be a list
    scalar = False
    if not hasattr(x, "__len__"):
        scalar = True
        x = np.asarray([x])

    # Compute the probabilities: Add up both angles that produce the given
    # value, except for the angles 0 and 0.5, which map to the unique a-values,
    # 0 and 1, respectively
    pr = np.array(
        [
            _pdf_a_single_angle(xi, p, m, _alpha) + _pdf_a_single_angle(xi, p, m, _beta)
            if (xi not in [0, 1])
            else _pdf_a_single_angle(xi, p, m, _alpha)
            for xi in x
        ]
    ).flatten()

    # If is was a scalar return scalar otherwise the array
    return pr[0] if scalar else pr


def derivative_log_pdf_a(x, p, m):
    """

    Return the derivative of the logarithm of the PDF of a.



    Args:

        x (float): the grid point

        p (float): the true value

        m (float): the number of evaluation qubits



    Returns:

        float: d/dp log(PDF(x|p))

    """
    M = 2**m

    if x not in [0, 1]:
        num_p1 = 0
        for A, dA, B, dB in zip(
            [_alpha, _beta],
            [_derivative_alpha, _derivative_beta],
            [_beta, _alpha],
            [_derivative_beta, _derivative_alpha],
        ):
            num_p1 += 2 * M * np.sin(M * A(x, p)) * np.cos(M * A(x, p)) * dA(x, p) * np.sin(
                B(x, p)
            ) ** 2 + 2 * np.sin(M * A(x, p)) ** 2 * np.sin(B(x, p)) * np.cos(B(x, p)) * dB(x, p)

        den_p1 = (
            np.sin(M * _alpha(x, p)) ** 2 * np.sin(_beta(x, p)) ** 2
            + np.sin(M * _beta(x, p)) ** 2 * np.sin(_alpha(x, p)) ** 2
        )

        num_p2 = 0
        for A, dA, B in zip(
            [_alpha, _beta], [_derivative_alpha, _derivative_beta], [_beta, _alpha]
        ):
            num_p2 += 2 * np.cos(A(x, p)) * dA(x, p) * np.sin(B(x, p))

        den_p2 = np.sin(_alpha(x, p)) * np.sin(_beta(x, p))

        return num_p1 / den_p1 - num_p2 / den_p2

    return 2 * _derivative_alpha(x, p) * (M / np.tan(M * _alpha(x, p)) - 1 / np.tan(_alpha(x, p)))