File size: 4,475 Bytes
8a629e6
 
 
 
bfedaf9
 
 
 
8a629e6
 
bfedaf9
 
 
 
 
 
 
 
 
 
 
 
 
 
8a629e6
 
 
 
 
 
 
bfedaf9
 
 
 
 
 
 
 
8a629e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4cba8f
8a629e6
 
 
 
 
a4cba8f
5c98e86
bfedaf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a629e6
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- crows_pairs
metrics:
- accuracy
model-index:
- name: t5-small_crows_pairs_finetuned
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: crows_pairs
      type: crows_pairs
      config: crows_pairs
      split: test
      args: crows_pairs
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.6390728476821192
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small_crows_pairs_finetuned

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the crows_pairs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7111
- Accuracy: 0.6391
- Tp: 0.4934
- Tn: 0.1457
- Fp: 0.3510
- Fn: 0.0099

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Tp     | Tn     | Fp     | Fn     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:------:|:------:|
| 0.6595        | 1.05  | 20   | 0.3672          | 0.5033   | 0.5033 | 0.0    | 0.4967 | 0.0    |
| 0.4048        | 2.11  | 40   | 0.3723          | 0.5033   | 0.5033 | 0.0    | 0.4967 | 0.0    |
| 0.3397        | 3.16  | 60   | 0.3397          | 0.5033   | 0.5033 | 0.0    | 0.4967 | 0.0    |
| 0.3215        | 4.21  | 80   | 0.3227          | 0.5132   | 0.5033 | 0.0099 | 0.4868 | 0.0    |
| 0.3078        | 5.26  | 100  | 0.3381          | 0.6060   | 0.5033 | 0.1026 | 0.3940 | 0.0    |
| 0.2258        | 6.32  | 120  | 0.3012          | 0.5629   | 0.5    | 0.0629 | 0.4338 | 0.0033 |
| 0.2099        | 7.37  | 140  | 0.3018          | 0.5894   | 0.5    | 0.0894 | 0.4073 | 0.0033 |
| 0.1531        | 8.42  | 160  | 0.3379          | 0.5464   | 0.5033 | 0.0430 | 0.4536 | 0.0    |
| 0.129         | 9.47  | 180  | 0.3602          | 0.5993   | 0.5    | 0.0993 | 0.3974 | 0.0033 |
| 0.0956        | 10.53 | 200  | 0.3846          | 0.5762   | 0.5    | 0.0762 | 0.4205 | 0.0033 |
| 0.0736        | 11.58 | 220  | 0.4245          | 0.5695   | 0.5033 | 0.0662 | 0.4305 | 0.0    |
| 0.0474        | 12.63 | 240  | 0.4938          | 0.5695   | 0.5033 | 0.0662 | 0.4305 | 0.0    |
| 0.0369        | 13.68 | 260  | 0.5201          | 0.5960   | 0.5    | 0.0960 | 0.4007 | 0.0033 |
| 0.0323        | 14.74 | 280  | 0.5559          | 0.5993   | 0.4934 | 0.1060 | 0.3907 | 0.0099 |
| 0.0267        | 15.79 | 300  | 0.5965          | 0.5894   | 0.5    | 0.0894 | 0.4073 | 0.0033 |
| 0.026         | 16.84 | 320  | 0.6052          | 0.5960   | 0.4967 | 0.0993 | 0.3974 | 0.0066 |
| 0.0194        | 17.89 | 340  | 0.6144          | 0.6126   | 0.4934 | 0.1192 | 0.3775 | 0.0099 |
| 0.0242        | 18.95 | 360  | 0.6286          | 0.6126   | 0.4934 | 0.1192 | 0.3775 | 0.0099 |
| 0.0274        | 20.0  | 380  | 0.6313          | 0.6325   | 0.4901 | 0.1424 | 0.3543 | 0.0132 |
| 0.0151        | 21.05 | 400  | 0.6685          | 0.6192   | 0.4934 | 0.1258 | 0.3709 | 0.0099 |
| 0.0131        | 22.11 | 420  | 0.6815          | 0.6258   | 0.4934 | 0.1325 | 0.3642 | 0.0099 |
| 0.0095        | 23.16 | 440  | 0.6961          | 0.6192   | 0.4967 | 0.1225 | 0.3742 | 0.0066 |
| 0.0064        | 24.21 | 460  | 0.6980          | 0.6325   | 0.4934 | 0.1391 | 0.3576 | 0.0099 |
| 0.0103        | 25.26 | 480  | 0.7117          | 0.6192   | 0.4934 | 0.1258 | 0.3709 | 0.0099 |
| 0.0083        | 26.32 | 500  | 0.7096          | 0.6258   | 0.4934 | 0.1325 | 0.3642 | 0.0099 |
| 0.0079        | 27.37 | 520  | 0.7198          | 0.6258   | 0.4934 | 0.1325 | 0.3642 | 0.0099 |
| 0.01          | 28.42 | 540  | 0.7210          | 0.6258   | 0.4934 | 0.1325 | 0.3642 | 0.0099 |
| 0.011         | 29.47 | 560  | 0.7111          | 0.6391   | 0.4934 | 0.1457 | 0.3510 | 0.0099 |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.13.1
- Datasets 2.10.1
- Tokenizers 0.13.2