File size: 4,596 Bytes
2f97ee7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- stereoset
metrics:
- accuracy
model-index:
- name: bert-base-uncased_stereoset_finetuned
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: stereoset
type: stereoset
config: intersentence
split: validation
args: intersentence
metrics:
- name: Accuracy
type: accuracy
value: 0.7260596546310832
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased_stereoset_finetuned
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the stereoset dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3464
- Accuracy: 0.7261
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.21 | 5 | 0.6832 | 0.5565 |
| No log | 0.42 | 10 | 0.6945 | 0.4741 |
| No log | 0.62 | 15 | 0.6659 | 0.6224 |
| No log | 0.83 | 20 | 0.6337 | 0.6758 |
| No log | 1.04 | 25 | 0.6019 | 0.6695 |
| No log | 1.25 | 30 | 0.5797 | 0.7096 |
| No log | 1.46 | 35 | 0.5562 | 0.7166 |
| No log | 1.67 | 40 | 0.5497 | 0.7363 |
| No log | 1.88 | 45 | 0.5382 | 0.7418 |
| No log | 2.08 | 50 | 0.5356 | 0.7418 |
| No log | 2.29 | 55 | 0.5690 | 0.7316 |
| No log | 2.5 | 60 | 0.5778 | 0.7418 |
| No log | 2.71 | 65 | 0.5695 | 0.7386 |
| No log | 2.92 | 70 | 0.5765 | 0.7386 |
| No log | 3.12 | 75 | 0.6079 | 0.7363 |
| No log | 3.33 | 80 | 0.6919 | 0.7370 |
| No log | 3.54 | 85 | 0.7396 | 0.7339 |
| No log | 3.75 | 90 | 0.7109 | 0.7339 |
| No log | 3.96 | 95 | 0.7246 | 0.7308 |
| No log | 4.17 | 100 | 0.7502 | 0.7292 |
| No log | 4.38 | 105 | 0.8222 | 0.7331 |
| No log | 4.58 | 110 | 0.8508 | 0.7268 |
| No log | 4.79 | 115 | 0.8995 | 0.7378 |
| No log | 5.0 | 120 | 0.8797 | 0.7323 |
| No log | 5.21 | 125 | 0.9254 | 0.7370 |
| No log | 5.42 | 130 | 0.9863 | 0.7292 |
| No log | 5.62 | 135 | 1.0044 | 0.7198 |
| No log | 5.83 | 140 | 1.0236 | 0.7339 |
| No log | 6.04 | 145 | 1.0705 | 0.7355 |
| No log | 6.25 | 150 | 1.0734 | 0.7323 |
| No log | 6.46 | 155 | 1.1066 | 0.7300 |
| No log | 6.67 | 160 | 1.1166 | 0.7292 |
| No log | 6.88 | 165 | 1.1258 | 0.7370 |
| No log | 7.08 | 170 | 1.1972 | 0.7300 |
| No log | 7.29 | 175 | 1.1682 | 0.7268 |
| No log | 7.5 | 180 | 1.2221 | 0.7166 |
| No log | 7.71 | 185 | 1.2813 | 0.7151 |
| No log | 7.92 | 190 | 1.3180 | 0.7214 |
| No log | 8.12 | 195 | 1.3224 | 0.7166 |
| No log | 8.33 | 200 | 1.3252 | 0.7135 |
| No log | 8.54 | 205 | 1.3205 | 0.7221 |
| No log | 8.75 | 210 | 1.3266 | 0.7245 |
| No log | 8.96 | 215 | 1.3318 | 0.7206 |
| No log | 9.17 | 220 | 1.3345 | 0.7237 |
| No log | 9.38 | 225 | 1.3378 | 0.7245 |
| No log | 9.58 | 230 | 1.3422 | 0.7261 |
| No log | 9.79 | 235 | 1.3453 | 0.7261 |
| No log | 10.0 | 240 | 1.3464 | 0.7261 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1
- Datasets 2.9.0
- Tokenizers 0.13.2
|