File size: 12,857 Bytes
712d350
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import gradio as gr
import sys
import os
from transformers import AutoModel, AutoTokenizer
from transformers.utils import cached_file

# Load model and tokenizer from Hugging Face Hub
model = AutoModel.from_pretrained("hemantn/ablang2", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("hemantn/ablang2", trust_remote_code=True)

# Find the cached model directory and import adapter
adapter_path = cached_file("hemantn/ablang2", "adapter.py")
cached_model_dir = os.path.dirname(adapter_path)
sys.path.insert(0, cached_model_dir)

# Import and create the adapter
from adapter import AbLang2PairedHuggingFaceAdapter
ablang = AbLang2PairedHuggingFaceAdapter(model=model, tokenizer=tokenizer)

def restore_sequences(heavy_chain, light_chain, use_align=False):
    """
    Restore masked residues in antibody sequences.
    
    Args:
        heavy_chain (str): Heavy chain sequence with masked residues (*)
        light_chain (str): Light chain sequence with masked residues (*)
        use_align (bool): Whether to use alignment for variable missing lengths
    
    Returns:
        tuple: (restored_heavy, restored_light, highlighted_heavy, highlighted_light)
    """
    try:
        # Check if alignment is requested but not available
        if use_align:
            try:
                import anarci
            except ImportError:
                return "Alignment feature requires 'anarci' package which is not available. Please disable alignment option.", "", ""
        # Prepare input sequences
        if heavy_chain.strip() and light_chain.strip():
            # Both chains provided
            sequences = [[heavy_chain.strip(), light_chain.strip()]]
        elif heavy_chain.strip():
            # Only heavy chain provided
            sequences = [[heavy_chain.strip(), ""]]
        elif light_chain.strip():
            # Only light chain provided
            sequences = [["", light_chain.strip()]]
        else:
            return "Please provide at least one antibody chain sequence.", "", "", ""
        
        # Perform restoration
        restored = ablang(sequences, mode='restore', align=use_align)
        
        # Format output
        if hasattr(restored, '__len__') and len(restored) > 0:
            result = restored[0]  # Get the first (and only) result
            
            # Parse the result to separate heavy and light chains
            if '>|<' in result:
                # Both chains present
                heavy_part = result.split('>|<')[0].replace('<', '').replace('>', '')
                light_part = result.split('>|<')[1].replace('<', '').replace('>', '')
            elif result.startswith('<') and result.endswith('>'):
                # Only one chain present
                if heavy_chain.strip():
                    heavy_part = result.replace('<', '').replace('>', '')
                    light_part = ""
                else:
                    heavy_part = ""
                    light_part = result.replace('<', '').replace('>', '')
            else:
                return "Error: Unexpected result format.", "", "", ""
            
            # Create highlighted versions
            highlighted_heavy = highlight_restored_residues(heavy_chain.strip(), heavy_part)
            highlighted_light = highlight_restored_residues(light_chain.strip(), light_part)
            
            # Create HTML outputs with proper styling - no scroll, wrap text
            heavy_html = f'<div class="restored-sequence-box" style="padding: 10px; background-color: #f8f9fa; border: 1px solid #dee2e6; border-radius: 4px;">{highlighted_heavy}</div>'
            light_html = f'<div class="restored-sequence-box" style="padding: 10px; background-color: #f8f9fa; border: 1px solid #dee2e6; border-radius: 4px;">{highlighted_light}</div>'
            
            return heavy_html, light_html
        else:
            return "Error: No restoration result obtained.", "", ""
            
    except Exception as e:
        return f"Error during restoration: {str(e)}", "", ""

def highlight_restored_residues(original_seq, restored_seq):
    """
    Highlight restored residues in green.
    """
    if not original_seq or not restored_seq:
        return restored_seq
    
    highlighted = ""
    for i, (orig_char, rest_char) in enumerate(zip(original_seq, restored_seq)):
        if orig_char == '*' and rest_char != '*':
            # This residue was restored
            highlighted += f'<span class="restored-highlight">{rest_char}</span>'
        else:
            highlighted += rest_char
    
    # Add any remaining characters from restored sequence
    if len(restored_seq) > len(original_seq):
        highlighted += restored_seq[len(original_seq):]
    
    return highlighted

# Create Gradio interface
with gr.Blocks(title="AbLang2 Sequence Restorer", theme=gr.themes.Soft(), css="""
    * {
        font-family: 'Courier New', monospace !important;
    }
    .sequence-input, .sequence-output {
        font-family: 'Courier New', monospace !important;
        font-size: 14px !important;
        letter-spacing: 0.5px !important;
    }
    .restored-highlight {
        background-color: #90EE90 !important;
        color: #000 !important;
        font-weight: bold !important;
    }
    .examples {
        font-family: 'Courier New', monospace !important;
        font-size: 14px !important;
        letter-spacing: 0.5px !important;
    }
    .restored-sequence-box {
        font-family: 'Courier New', monospace !important;
        font-size: 14px !important;
        letter-spacing: 0.5px !important;
        white-space: pre-wrap !important;
        word-wrap: break-word !important;
        overflow-wrap: break-word !important;
    }
    .restored-heading {
        color: #2E8B57 !important;
        font-weight: bold !important;
        font-size: 18px !important;
    }
    .example-text {
        font-family: 'Courier New', monospace !important;
        font-size: 12px !important;
        white-space: pre-wrap !important;
        word-wrap: break-word !important;
    }
    .examples-table {
        font-family: 'Courier New', monospace !important;
        font-size: 12px !important;
        white-space: pre-wrap !important;
        word-wrap: break-word !important;
        max-width: none !important;
        overflow: visible !important;
    }
    .examples-table td {
        font-family: 'Courier New', monospace !important;
        font-size: 12px !important;
        white-space: pre-wrap !important;
        word-wrap: break-word !important;
        max-width: none !important;
        overflow: visible !important;
        text-overflow: unset !important;
    }
    .sequence-output label {
        font-weight: bold !important;
        color: #495057 !important;
        font-size: 14px !important;
        margin-bottom: 5px !important;
    }
    /* Force full display of examples */
    .examples-container {
        font-family: 'Courier New', monospace !important;
        font-size: 12px !important;
    }
    .examples-container table {
        width: 100% !important;
        table-layout: auto !important;
    }
    .examples-container td {
        white-space: pre-wrap !important;
        word-wrap: break-word !important;
        overflow-wrap: break-word !important;
        max-width: none !important;
        text-overflow: unset !important;
        padding: 8px !important;
        vertical-align: top !important;
    }
    .examples-container th {
        white-space: nowrap !important;
        padding: 8px !important;
    }
    /* Override any Gradio default truncation */
    .examples table td {
        white-space: pre-wrap !important;
        word-wrap: break-word !important;
        overflow-wrap: break-word !important;
        max-width: none !important;
        text-overflow: unset !important;
        overflow: visible !important;
        font-family: 'Courier New', monospace !important;
        font-size: 12px !important;
    }
    .examples table {
        table-layout: auto !important;
        width: 100% !important;
    }
    /* Target the specific examples component */
    div[data-testid="examples"] table td {
        white-space: pre-wrap !important;
        word-wrap: break-word !important;
        overflow-wrap: break-word !important;
        max-width: none !important;
        text-overflow: unset !important;
        overflow: visible !important;
        font-family: 'Courier New', monospace !important;
        font-size: 12px !important;
    }
    /* Force examples to show full content */
    .examples table, .examples table td, .examples table th {
        white-space: pre-wrap !important;
        word-wrap: break-word !important;
        overflow-wrap: break-word !important;
        max-width: none !important;
        text-overflow: unset !important;
        overflow: visible !important;
        font-family: 'Courier New', monospace !important;
        font-size: 12px !important;
        table-layout: auto !important;
        width: auto !important;
        min-width: 100% !important;
    }
    /* Override any inline styles */
    .examples * {
        white-space: pre-wrap !important;
        word-wrap: break-word !important;
        overflow-wrap: break-word !important;
        max-width: none !important;
        text-overflow: unset !important;
        overflow: visible !important;
    }
    /* Style output labels to match input labels exactly */
    .output-label {
        font-weight: 600 !important;
        color: var(--label-text-color) !important;
        font-size: 14px !important;
        margin-bottom: 8px !important;
        margin-top: 16px !important;
        line-height: 1.4 !important;
        display: block !important;
    }
""") as demo:
    gr.Markdown("""
    # 🧬 AbLang2 Sequence Restorer
    
    This app uses the AbLang2 model to restore masked residues (*) in antibody sequences. 
    You can provide either one or both heavy and light chain sequences.
    
    **Instructions:**
    - Use `*` to mask residues you want to restore
    - Provide heavy chain, light chain, or both
    - Enable "Use Alignment" for variable missing lengths
    """)
    
    with gr.Row():
        with gr.Column():
            heavy_input = gr.Textbox(
                label="Heavy Chain Sequence",
                placeholder="Enter heavy chain sequence with masked residues (*)...",
                lines=3,
                max_lines=5,
                elem_classes=["sequence-input"]
            )
            
            light_input = gr.Textbox(
                label="Light Chain Sequence", 
                placeholder="Enter light chain sequence with masked residues (*)...",
                lines=3,
                max_lines=5,
                elem_classes=["sequence-input"]
            )
            
            align_checkbox = gr.Checkbox(
                label="Use Alignment (for variable missing lengths) - Requires anarci package",
                value=False
            )
            
            restore_btn = gr.Button("🔄 Restore Sequences", variant="primary")
        
        with gr.Column():
            gr.Markdown("### 🧬 Restored Sequences", elem_classes=["restored-heading"])
            gr.Markdown("*Green highlighting shows restored residues*")
            
            gr.Markdown("**Heavy Chain Sequence**", elem_classes=["output-label"])
            heavy_output = gr.HTML(label="")
            
            gr.Markdown("**Light Chain Sequence**", elem_classes=["output-label"])
            light_output = gr.HTML(label="")
    
    # Example sequences
    gr.Examples(
        examples=[
            [
                "EVQ***SGGEVKKPGASVKVSCRASGYTFRNYGLTWVRQAPGQGLEWMGWISAYNGNTNYAQKFQGRVTLTTDTSTSTAYMELRSLRSDDTAVYFCAR**PGHGAAFMDVWGTGTTVTVSS",
                "DIQLTQSPLSLPVTLGQPASISCRSS*SLEASDTNIYLSWFQQRPGQSPRRLIYKI*NRDSGVPDRFSGSGSGTHFTLRISRVEADDVAVYYCMQGTHWPPAFGQGTKVDIK"
            ],
            [
                "EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMGWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDY**GMDVWGQGTTVTVSS",
                ""
            ],
            [
                "",
                "DIQLTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIY*ASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTP*TFGQGTKVEIK"
            ]
        ],
        inputs=[heavy_input, light_input],
        label="Example Sequences"
    )
    
    # Connect the button to the function
    restore_btn.click(
        fn=restore_sequences,
        inputs=[heavy_input, light_input, align_checkbox],
        outputs=[heavy_output, light_output]
    )
    
    gr.Markdown("""
    ---
    **Note:** This app uses the AbLang2 model from Hugging Face Hub. 
    The restoration process may take a few seconds depending on sequence length and complexity.
    """)

if __name__ == "__main__":
    demo.launch()