krvhrv's picture
Update README.md
231c1d0 verified
---
library_name: transformers
language:
- ar
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
### Direct Use
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("health360/Sehty360-llama-3-8b-arabic-health-instruct")
model = AutoModelForCausalLM.from_pretrained("health360/Sehty360-llama-3-8b-arabic-health-instruct", device_map='auto', torch_dtype=torch.bfloat16)
text = """
### Input:
سلام عليكم اشعر بضيق في التنفس واعاني من كثرة البلغم
### Response:
"""
stop_word = "###END###"
# Encode the input text
inputs = tokenizer(text, return_tensors='pt').to('cuda:0')
# Remove token type ids if present, not all models use them
inputs.pop("token_type_ids", None)
# Generating outputs with stopping criteria
outputs = model.generate(
**inputs,
max_new_tokens=512,
do_sample=False,
early_stopping=True,
temperature=0.8,
top_k=50,
top_p=0.95,
num_return_sequences=1,
eos_token_id=tokenizer.encode(stop_word, add_special_tokens=False)[0] # Set EOS token to your stop word
)
outputs = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(outputs)
### Input:
سلام عليكم اشعر بضيق في التنفس واعاني من كثرة البلغم
### Response:
وعليكم السلام! أنا هنا لمساعدتك. ضيق التنفس مع وجود بلغم يمكن أن يكون مؤشراً على وجود عدوى في الرئة أو القصبات.
أوصي بأن تقوم بزيارة طبيب مختص بأمراض الرئة والصدرية للحصول على تشخيص دقيق. يمكن للطبيب أن يطلب إجراء فحوصات دم، أشعة على الصدر، أو حتى اختبارات أخرى مثل تخطيط الرئة لتحديد نوع العدوى والمضاد المناسب لها.
إذا كنت ترغب، يمكنني مساعدتك في العثور على طبيب مختص بأمراض الرئة والصدرية في منطقتك. هل تود معرفة معلومات عن الأطباء المتاحين في منطقتك؟
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]