metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: >-
batch-size16_FFPP-raw_opencv-1FPS_faces-expand0-aligned_unaugmentation_seed-42_2_3060
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9849798066887507
- name: Precision
type: precision
value: 0.9856322663987369
- name: Recall
type: recall
value: 0.9953182977736549
- name: F1
type: f1
value: 0.9904516017365969
batch-size16_FFPP-raw_opencv-1FPS_faces-expand0-aligned_unaugmentation_seed-42_2_3060
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0418
- Accuracy: 0.9850
- Precision: 0.9856
- Recall: 0.9953
- F1: 0.9905
- Roc Auc: 0.9990
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc Auc |
---|---|---|---|---|---|---|---|---|
0.0397 | 0.9996 | 1377 | 0.0418 | 0.9850 | 0.9856 | 0.9953 | 0.9905 | 0.9990 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1
- Datasets 2.20.0
- Tokenizers 0.19.1