Mistral_VStar_iter1 / README.md
hbin0701's picture
edit base model
024ecb0
|
raw
history blame
2.5 kB
metadata
base_model: mistralai/Mistral-7B-v0.1
tags:
  - alignment-handbook
  - generated_from_trainer
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
model-index:
  - name: mistral_7b_gsm8k_ep2_1e-5_dpo
    results: []

Visualize in Weights & Biases

mistral_7b_gsm8k_ep2_1e-5_dpo

This model is a fine-tuned version of /home/hyeonbin/self_train/Verifiers/models/mistral_7b_gsm8k_ep2_1e-5_rft_round1 on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0005
  • Rewards/chosen: -1.7120
  • Rewards/rejected: -14.3548
  • Rewards/accuracies: 1.0
  • Rewards/margins: 12.6428
  • Logps/rejected: -1466.6733
  • Logps/chosen: -208.2280
  • Logits/rejected: -3.2168
  • Logits/chosen: -2.3996

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.014 1.0 7066 0.0005 -1.7120 -14.3548 1.0 12.6428 -1466.6733 -208.2280 -3.2168 -2.3996

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.14.6
  • Tokenizers 0.19.1