hassnain's picture
update model card README.md
c894eb2
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-timit-demo-colab1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-timit-demo-colab1
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1904
- Wer: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:---:|
| 5.0877 | 1.42 | 500 | 3.2909 | 1.0 |
| 3.1333 | 2.85 | 1000 | 3.2624 | 1.0 |
| 3.1335 | 4.27 | 1500 | 3.2121 | 1.0 |
| 3.1294 | 5.7 | 2000 | 3.2047 | 1.0 |
| 3.1307 | 7.12 | 2500 | 3.2020 | 1.0 |
| 3.1279 | 8.55 | 3000 | 3.1978 | 1.0 |
| 3.1296 | 9.97 | 3500 | 3.2015 | 1.0 |
| 3.1273 | 11.4 | 4000 | 3.1983 | 1.0 |
| 3.1273 | 12.82 | 4500 | 3.2258 | 1.0 |
| 3.1274 | 14.25 | 5000 | 3.2151 | 1.0 |
| 3.1256 | 15.67 | 5500 | 3.2105 | 1.0 |
| 3.1302 | 17.09 | 6000 | 3.2018 | 1.0 |
| 3.1285 | 18.52 | 6500 | 3.2006 | 1.0 |
| 3.1251 | 19.94 | 7000 | 3.1858 | 1.0 |
| 3.1283 | 21.37 | 7500 | 3.1829 | 1.0 |
| 3.1267 | 22.79 | 8000 | 3.1773 | 1.0 |
| 3.1283 | 24.22 | 8500 | 3.1857 | 1.0 |
| 3.1253 | 25.64 | 9000 | 3.1847 | 1.0 |
| 3.1251 | 27.07 | 9500 | 3.1832 | 1.0 |
| 3.1245 | 28.49 | 10000 | 3.1869 | 1.0 |
| 3.1225 | 29.91 | 10500 | 3.1904 | 1.0 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.11.0+cu113
- Datasets 1.18.3
- Tokenizers 0.10.3