File size: 2,558 Bytes
c894eb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-timit-demo-colab1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-base-timit-demo-colab1

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1904
- Wer: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:---:|
| 5.0877        | 1.42  | 500   | 3.2909          | 1.0 |
| 3.1333        | 2.85  | 1000  | 3.2624          | 1.0 |
| 3.1335        | 4.27  | 1500  | 3.2121          | 1.0 |
| 3.1294        | 5.7   | 2000  | 3.2047          | 1.0 |
| 3.1307        | 7.12  | 2500  | 3.2020          | 1.0 |
| 3.1279        | 8.55  | 3000  | 3.1978          | 1.0 |
| 3.1296        | 9.97  | 3500  | 3.2015          | 1.0 |
| 3.1273        | 11.4  | 4000  | 3.1983          | 1.0 |
| 3.1273        | 12.82 | 4500  | 3.2258          | 1.0 |
| 3.1274        | 14.25 | 5000  | 3.2151          | 1.0 |
| 3.1256        | 15.67 | 5500  | 3.2105          | 1.0 |
| 3.1302        | 17.09 | 6000  | 3.2018          | 1.0 |
| 3.1285        | 18.52 | 6500  | 3.2006          | 1.0 |
| 3.1251        | 19.94 | 7000  | 3.1858          | 1.0 |
| 3.1283        | 21.37 | 7500  | 3.1829          | 1.0 |
| 3.1267        | 22.79 | 8000  | 3.1773          | 1.0 |
| 3.1283        | 24.22 | 8500  | 3.1857          | 1.0 |
| 3.1253        | 25.64 | 9000  | 3.1847          | 1.0 |
| 3.1251        | 27.07 | 9500  | 3.1832          | 1.0 |
| 3.1245        | 28.49 | 10000 | 3.1869          | 1.0 |
| 3.1225        | 29.91 | 10500 | 3.1904          | 1.0 |


### Framework versions

- Transformers 4.11.3
- Pytorch 1.11.0+cu113
- Datasets 1.18.3
- Tokenizers 0.10.3