File size: 2,374 Bytes
fece874
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9a6a9c
 
 
 
fece874
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9a6a9c
fece874
 
 
 
 
b9a6a9c
 
 
 
 
 
 
 
 
 
 
 
fece874
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: bert-finetuned-resumes-sections
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-finetuned-resumes-sections

This model is a fine-tuned version of [dbmdz/bert-base-french-europeana-cased](https://huggingface.co/dbmdz/bert-base-french-europeana-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0333
- F1: 0.9548
- Roc Auc: 0.9732
- Accuracy: 0.9493

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Roc Auc | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
| 0.1659        | 1.0   | 601  | 0.0645          | 0.9201 | 0.9434  | 0.8910   |
| 0.055         | 2.0   | 1202 | 0.0426          | 0.9407 | 0.9633  | 0.9309   |
| 0.0324        | 3.0   | 1803 | 0.0371          | 0.9450 | 0.9663  | 0.9368   |
| 0.0226        | 4.0   | 2404 | 0.0389          | 0.9402 | 0.9651  | 0.9343   |
| 0.0125        | 5.0   | 3005 | 0.0354          | 0.9433 | 0.9650  | 0.9343   |
| 0.0091        | 6.0   | 3606 | 0.0364          | 0.9482 | 0.9696  | 0.9434   |
| 0.0075        | 7.0   | 4207 | 0.0363          | 0.9464 | 0.9676  | 0.9393   |
| 0.007         | 8.0   | 4808 | 0.0333          | 0.9548 | 0.9732  | 0.9493   |
| 0.0063        | 9.0   | 5409 | 0.0358          | 0.9501 | 0.9698  | 0.9434   |
| 0.0043        | 10.0  | 6010 | 0.0380          | 0.9475 | 0.9707  | 0.9443   |
| 0.0032        | 11.0  | 6611 | 0.0377          | 0.9491 | 0.9712  | 0.9468   |
| 0.0031        | 12.0  | 7212 | 0.0375          | 0.9500 | 0.9716  | 0.9459   |


### Framework versions

- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1