File size: 4,853 Bytes
ecd65ef
b4712eb
ecd65ef
 
 
 
 
 
 
b4712eb
 
ecd65ef
 
 
 
 
 
 
 
 
 
 
 
24af199
 
 
 
 
ecd65ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24af199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecd65ef
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
---
base_model: haryoaw/scenario-TCR-NER_data-univner_full
library_name: transformers
license: mit
metrics:
- precision
- recall
- f1
- accuracy
tags:
- generated_from_trainer
model-index:
- name: scenario-kd-scr-ner-half-xlmr_data-univner_full66
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# scenario-kd-scr-ner-half-xlmr_data-univner_full66

This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_full](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_full) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 121.6095
- Precision: 0.4270
- Recall: 0.3784
- F1: 0.4013
- Accuracy: 0.9476

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 66
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 259.2613      | 0.2911 | 500   | 189.6813        | 0.0       | 0.0    | 0.0    | 0.9241   |
| 179.4566      | 0.5822 | 1000  | 173.2544        | 0.4545    | 0.0137 | 0.0266 | 0.9246   |
| 167.777       | 0.8732 | 1500  | 164.4018        | 0.3561    | 0.0361 | 0.0655 | 0.9256   |
| 160.7257      | 1.1643 | 2000  | 159.5333        | 0.0954    | 0.0042 | 0.0080 | 0.9243   |
| 155.3029      | 1.4554 | 2500  | 156.0974        | 0.2908    | 0.0283 | 0.0515 | 0.9254   |
| 152.3202      | 1.7465 | 3000  | 151.0953        | 0.2614    | 0.0521 | 0.0869 | 0.9266   |
| 148.4375      | 2.0375 | 3500  | 149.1951        | 0.4117    | 0.0326 | 0.0604 | 0.9256   |
| 144.8759      | 2.3286 | 4000  | 144.9364        | 0.2888    | 0.1091 | 0.1583 | 0.9284   |
| 141.9512      | 2.6197 | 4500  | 142.7550        | 0.3105    | 0.1097 | 0.1621 | 0.9288   |
| 139.8162      | 2.9108 | 5000  | 140.1311        | 0.3438    | 0.0981 | 0.1527 | 0.9289   |
| 136.3472      | 3.2019 | 5500  | 138.3547        | 0.2671    | 0.1955 | 0.2258 | 0.9327   |
| 134.5775      | 3.4929 | 6000  | 135.6351        | 0.2823    | 0.1747 | 0.2158 | 0.9340   |
| 132.1038      | 3.7840 | 6500  | 134.0777        | 0.2685    | 0.1773 | 0.2136 | 0.9349   |
| 130.6851      | 4.0751 | 7000  | 132.9280        | 0.2858    | 0.1840 | 0.2238 | 0.9359   |
| 128.5001      | 4.3662 | 7500  | 131.8978        | 0.3058    | 0.2001 | 0.2419 | 0.9369   |
| 127.3796      | 4.6573 | 8000  | 130.3655        | 0.3250    | 0.2151 | 0.2589 | 0.9378   |
| 126.5618      | 4.9483 | 8500  | 129.1083        | 0.3273    | 0.2332 | 0.2723 | 0.9383   |
| 125.2975      | 5.2394 | 9000  | 128.4492        | 0.3147    | 0.2560 | 0.2823 | 0.9396   |
| 123.5341      | 5.5305 | 9500  | 127.2300        | 0.3418    | 0.2580 | 0.2940 | 0.9405   |
| 122.698       | 5.8216 | 10000 | 126.8739        | 0.3390    | 0.2811 | 0.3073 | 0.9402   |
| 121.6237      | 6.1126 | 10500 | 125.7438        | 0.3739    | 0.3011 | 0.3336 | 0.9434   |
| 120.6456      | 6.4037 | 11000 | 125.2620        | 0.3606    | 0.3011 | 0.3282 | 0.9430   |
| 120.2335      | 6.6948 | 11500 | 124.5899        | 0.3759    | 0.3466 | 0.3606 | 0.9447   |
| 119.8109      | 6.9859 | 12000 | 123.9922        | 0.3920    | 0.3213 | 0.3532 | 0.9442   |
| 118.4398      | 7.2770 | 12500 | 123.5926        | 0.3971    | 0.3497 | 0.3719 | 0.9455   |
| 117.945       | 7.5680 | 13000 | 123.2072        | 0.4014    | 0.3308 | 0.3627 | 0.9453   |
| 117.9631      | 7.8591 | 13500 | 122.8442        | 0.4017    | 0.3556 | 0.3773 | 0.9458   |
| 117.3963      | 8.1502 | 14000 | 122.6162        | 0.3940    | 0.3769 | 0.3852 | 0.9464   |
| 116.5054      | 8.4413 | 14500 | 122.1343        | 0.4079    | 0.3718 | 0.3890 | 0.9471   |
| 116.5259      | 8.7324 | 15000 | 121.9603        | 0.4158    | 0.3528 | 0.3817 | 0.9470   |
| 116.4213      | 9.0234 | 15500 | 121.8525        | 0.4173    | 0.3718 | 0.3933 | 0.9470   |
| 115.7738      | 9.3145 | 16000 | 121.6751        | 0.4247    | 0.3767 | 0.3993 | 0.9476   |
| 115.8023      | 9.6056 | 16500 | 121.5823        | 0.4306    | 0.3855 | 0.4068 | 0.9479   |
| 115.8227      | 9.8967 | 17000 | 121.6095        | 0.4270    | 0.3784 | 0.4013 | 0.9476   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1