haryoaw's picture
Initial Commit
3b9958b
|
raw
history blame
3.76 kB
---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
datasets:
- hate_speech_filipino
metrics:
- accuracy
- f1
model-index:
- name: scenario-kd-from-scratch-silver-data-hate_speech_filipino-model-xlm-roberta-base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# scenario-kd-from-scratch-silver-data-hate_speech_filipino-model-xlm-roberta-base
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the hate_speech_filipino dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1354
- Accuracy: 0.7665
- F1: 0.7412
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6969
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 0.32 | 100 | 2.4557 | 0.6656 | 0.6952 |
| No log | 0.64 | 200 | 2.0812 | 0.7063 | 0.7186 |
| No log | 0.96 | 300 | 1.9137 | 0.7079 | 0.7300 |
| No log | 1.28 | 400 | 1.8171 | 0.7172 | 0.7401 |
| 2.5353 | 1.6 | 500 | 1.7305 | 0.7462 | 0.6959 |
| 2.5353 | 1.92 | 600 | 2.3251 | 0.6645 | 0.7221 |
| 2.5353 | 2.24 | 700 | 1.5004 | 0.7571 | 0.7299 |
| 2.5353 | 2.56 | 800 | 1.7161 | 0.7431 | 0.6752 |
| 2.5353 | 2.88 | 900 | 1.3750 | 0.7519 | 0.7400 |
| 1.5143 | 3.19 | 1000 | 1.6104 | 0.7561 | 0.6968 |
| 1.5143 | 3.51 | 1100 | 1.4419 | 0.7561 | 0.7104 |
| 1.5143 | 3.83 | 1200 | 1.3306 | 0.7450 | 0.7496 |
| 1.5143 | 4.15 | 1300 | 1.4285 | 0.7668 | 0.7352 |
| 1.5143 | 4.47 | 1400 | 1.3335 | 0.7576 | 0.7552 |
| 1.1029 | 4.79 | 1500 | 1.3649 | 0.7394 | 0.7487 |
| 1.1029 | 5.11 | 1600 | 1.5830 | 0.7224 | 0.7434 |
| 1.1029 | 5.43 | 1700 | 1.2794 | 0.7592 | 0.7560 |
| 1.1029 | 5.75 | 1800 | 1.2877 | 0.7547 | 0.7165 |
| 1.1029 | 6.07 | 1900 | 1.2428 | 0.7637 | 0.7325 |
| 0.8948 | 6.39 | 2000 | 1.2774 | 0.7387 | 0.7494 |
| 0.8948 | 6.71 | 2100 | 1.2324 | 0.7628 | 0.7354 |
| 0.8948 | 7.03 | 2200 | 1.3675 | 0.7387 | 0.7505 |
| 0.8948 | 7.35 | 2300 | 1.2021 | 0.7670 | 0.7490 |
| 0.8948 | 7.67 | 2400 | 1.3012 | 0.7682 | 0.7348 |
| 0.7714 | 7.99 | 2500 | 1.2338 | 0.7580 | 0.7210 |
| 0.7714 | 8.31 | 2600 | 1.2189 | 0.7628 | 0.7519 |
| 0.7714 | 8.63 | 2700 | 1.2962 | 0.7410 | 0.7526 |
| 0.7714 | 8.95 | 2800 | 1.3151 | 0.7675 | 0.7416 |
| 0.7714 | 9.27 | 2900 | 1.1539 | 0.7616 | 0.7528 |
| 0.7096 | 9.58 | 3000 | 1.3696 | 0.7561 | 0.7523 |
| 0.7096 | 9.9 | 3100 | 1.2055 | 0.7514 | 0.7533 |
| 0.7096 | 10.22 | 3200 | 1.1354 | 0.7665 | 0.7412 |
### Framework versions
- Transformers 4.33.3
- Pytorch 2.0.1
- Datasets 2.14.5
- Tokenizers 0.13.3