Initial Commit
Browse files- README.md +95 -0
- config.json +28 -0
- pytorch_model.bin +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: xlm-roberta-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- hate_speech_filipino
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
- f1
|
11 |
+
model-index:
|
12 |
+
- name: scenario-kd-from-scratch-silver-data-hate_speech_filipino-model-xlm-roberta-base
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# scenario-kd-from-scratch-silver-data-hate_speech_filipino-model-xlm-roberta-base
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the hate_speech_filipino dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 1.1354
|
24 |
+
- Accuracy: 0.7665
|
25 |
+
- F1: 0.7412
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 5e-05
|
45 |
+
- train_batch_size: 32
|
46 |
+
- eval_batch_size: 32
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 6969
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
56 |
+
| No log | 0.32 | 100 | 2.4557 | 0.6656 | 0.6952 |
|
57 |
+
| No log | 0.64 | 200 | 2.0812 | 0.7063 | 0.7186 |
|
58 |
+
| No log | 0.96 | 300 | 1.9137 | 0.7079 | 0.7300 |
|
59 |
+
| No log | 1.28 | 400 | 1.8171 | 0.7172 | 0.7401 |
|
60 |
+
| 2.5353 | 1.6 | 500 | 1.7305 | 0.7462 | 0.6959 |
|
61 |
+
| 2.5353 | 1.92 | 600 | 2.3251 | 0.6645 | 0.7221 |
|
62 |
+
| 2.5353 | 2.24 | 700 | 1.5004 | 0.7571 | 0.7299 |
|
63 |
+
| 2.5353 | 2.56 | 800 | 1.7161 | 0.7431 | 0.6752 |
|
64 |
+
| 2.5353 | 2.88 | 900 | 1.3750 | 0.7519 | 0.7400 |
|
65 |
+
| 1.5143 | 3.19 | 1000 | 1.6104 | 0.7561 | 0.6968 |
|
66 |
+
| 1.5143 | 3.51 | 1100 | 1.4419 | 0.7561 | 0.7104 |
|
67 |
+
| 1.5143 | 3.83 | 1200 | 1.3306 | 0.7450 | 0.7496 |
|
68 |
+
| 1.5143 | 4.15 | 1300 | 1.4285 | 0.7668 | 0.7352 |
|
69 |
+
| 1.5143 | 4.47 | 1400 | 1.3335 | 0.7576 | 0.7552 |
|
70 |
+
| 1.1029 | 4.79 | 1500 | 1.3649 | 0.7394 | 0.7487 |
|
71 |
+
| 1.1029 | 5.11 | 1600 | 1.5830 | 0.7224 | 0.7434 |
|
72 |
+
| 1.1029 | 5.43 | 1700 | 1.2794 | 0.7592 | 0.7560 |
|
73 |
+
| 1.1029 | 5.75 | 1800 | 1.2877 | 0.7547 | 0.7165 |
|
74 |
+
| 1.1029 | 6.07 | 1900 | 1.2428 | 0.7637 | 0.7325 |
|
75 |
+
| 0.8948 | 6.39 | 2000 | 1.2774 | 0.7387 | 0.7494 |
|
76 |
+
| 0.8948 | 6.71 | 2100 | 1.2324 | 0.7628 | 0.7354 |
|
77 |
+
| 0.8948 | 7.03 | 2200 | 1.3675 | 0.7387 | 0.7505 |
|
78 |
+
| 0.8948 | 7.35 | 2300 | 1.2021 | 0.7670 | 0.7490 |
|
79 |
+
| 0.8948 | 7.67 | 2400 | 1.3012 | 0.7682 | 0.7348 |
|
80 |
+
| 0.7714 | 7.99 | 2500 | 1.2338 | 0.7580 | 0.7210 |
|
81 |
+
| 0.7714 | 8.31 | 2600 | 1.2189 | 0.7628 | 0.7519 |
|
82 |
+
| 0.7714 | 8.63 | 2700 | 1.2962 | 0.7410 | 0.7526 |
|
83 |
+
| 0.7714 | 8.95 | 2800 | 1.3151 | 0.7675 | 0.7416 |
|
84 |
+
| 0.7714 | 9.27 | 2900 | 1.1539 | 0.7616 | 0.7528 |
|
85 |
+
| 0.7096 | 9.58 | 3000 | 1.3696 | 0.7561 | 0.7523 |
|
86 |
+
| 0.7096 | 9.9 | 3100 | 1.2055 | 0.7514 | 0.7533 |
|
87 |
+
| 0.7096 | 10.22 | 3200 | 1.1354 | 0.7665 | 0.7412 |
|
88 |
+
|
89 |
+
|
90 |
+
### Framework versions
|
91 |
+
|
92 |
+
- Transformers 4.33.3
|
93 |
+
- Pytorch 2.0.1
|
94 |
+
- Datasets 2.14.5
|
95 |
+
- Tokenizers 0.13.3
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "xlm-roberta-base",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaForSequenceClassificationKD"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 6,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.33.3",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f874c7a2fcd80fcb080a7ff58d2117123c569318502a366ed399f20f687f10f
|
3 |
+
size 942107569
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ad9a9284c4f4ebd93db54a4717777f317239d9e42a80a7482cec1e241c76a33
|
3 |
+
size 4219
|