metadata
license: mit
base_model: facebook/xlm-v-base
tags:
- generated_from_trainer
datasets:
- tweet_sentiment_multilingual
metrics:
- accuracy
- f1
model-index:
- name: scenario-TCR-XLMV_data-cardiffnlp_tweet_sentiment_multilingual_all_alpha
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_sentiment_multilingual
type: tweet_sentiment_multilingual
config: all
split: validation
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.6203703703703703
- name: F1
type: f1
value: 0.620923254123051
scenario-TCR-XLMV_data-cardiffnlp_tweet_sentiment_multilingual_all_alpha
This model is a fine-tuned version of facebook/xlm-v-base on the tweet_sentiment_multilingual dataset. It achieves the following results on the evaluation set:
- Loss: 1.6081
- Accuracy: 0.6204
- F1: 0.6209
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 1123
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 500
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
1.0299 | 1.09 | 500 | 0.8919 | 0.5992 | 0.5922 |
0.8433 | 2.17 | 1000 | 0.8574 | 0.6150 | 0.6101 |
0.7031 | 3.26 | 1500 | 0.9338 | 0.6354 | 0.6292 |
0.5854 | 4.35 | 2000 | 1.1318 | 0.6227 | 0.6207 |
0.4556 | 5.43 | 2500 | 1.1376 | 0.6277 | 0.6270 |
0.357 | 6.52 | 3000 | 1.1730 | 0.6208 | 0.6195 |
0.2777 | 7.61 | 3500 | 1.3259 | 0.6246 | 0.6211 |
0.2198 | 8.7 | 4000 | 1.6081 | 0.6204 | 0.6209 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3