--- license: mit base_model: facebook/xlm-v-base tags: - generated_from_trainer datasets: - tweet_sentiment_multilingual metrics: - accuracy - f1 model-index: - name: scenario-TCR-XLMV_data-cardiffnlp_tweet_sentiment_multilingual_all_alpha results: - task: name: Text Classification type: text-classification dataset: name: tweet_sentiment_multilingual type: tweet_sentiment_multilingual config: all split: validation args: all metrics: - name: Accuracy type: accuracy value: 0.6203703703703703 - name: F1 type: f1 value: 0.620923254123051 --- # scenario-TCR-XLMV_data-cardiffnlp_tweet_sentiment_multilingual_all_alpha This model is a fine-tuned version of [facebook/xlm-v-base](https://huggingface.co/facebook/xlm-v-base) on the tweet_sentiment_multilingual dataset. It achieves the following results on the evaluation set: - Loss: 1.6081 - Accuracy: 0.6204 - F1: 0.6209 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 1123 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0299 | 1.09 | 500 | 0.8919 | 0.5992 | 0.5922 | | 0.8433 | 2.17 | 1000 | 0.8574 | 0.6150 | 0.6101 | | 0.7031 | 3.26 | 1500 | 0.9338 | 0.6354 | 0.6292 | | 0.5854 | 4.35 | 2000 | 1.1318 | 0.6227 | 0.6207 | | 0.4556 | 5.43 | 2500 | 1.1376 | 0.6277 | 0.6270 | | 0.357 | 6.52 | 3000 | 1.1730 | 0.6208 | 0.6195 | | 0.2777 | 7.61 | 3500 | 1.3259 | 0.6246 | 0.6211 | | 0.2198 | 8.7 | 4000 | 1.6081 | 0.6204 | 0.6209 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.13.3