File size: 3,354 Bytes
f59036e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
license: mit
base_model: FacebookAI/xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: scenario-KD-PR-MSV-D2_data-cl-cardiff_cl_only_alpha-jason
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# scenario-KD-PR-MSV-D2_data-cl-cardiff_cl_only_alpha-jason
This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 16.2447
- Accuracy: 0.3866
- F1: 0.3858
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 2222
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.09 | 250 | 12.0259 | 0.3449 | 0.3171 |
| 14.0331 | 2.17 | 500 | 11.3284 | 0.3819 | 0.3694 |
| 14.0331 | 3.26 | 750 | 11.1163 | 0.3951 | 0.3941 |
| 11.7619 | 4.35 | 1000 | 11.5284 | 0.3796 | 0.3733 |
| 11.7619 | 5.43 | 1250 | 11.3713 | 0.4174 | 0.4154 |
| 9.9697 | 6.52 | 1500 | 11.7460 | 0.3850 | 0.3770 |
| 9.9697 | 7.61 | 1750 | 12.6216 | 0.3927 | 0.3863 |
| 8.7178 | 8.7 | 2000 | 12.5277 | 0.4020 | 0.4005 |
| 8.7178 | 9.78 | 2250 | 11.8300 | 0.3912 | 0.3911 |
| 7.7259 | 10.87 | 2500 | 12.7404 | 0.4051 | 0.4035 |
| 7.7259 | 11.96 | 2750 | 13.6012 | 0.4051 | 0.4037 |
| 6.6383 | 13.04 | 3000 | 14.1112 | 0.3912 | 0.3884 |
| 6.6383 | 14.13 | 3250 | 14.0430 | 0.3920 | 0.3881 |
| 5.7088 | 15.22 | 3500 | 13.9183 | 0.3966 | 0.3951 |
| 5.7088 | 16.3 | 3750 | 14.5237 | 0.3904 | 0.3858 |
| 5.1104 | 17.39 | 4000 | 15.0371 | 0.4012 | 0.4011 |
| 5.1104 | 18.48 | 4250 | 15.4539 | 0.3866 | 0.3814 |
| 4.587 | 19.57 | 4500 | 14.4770 | 0.3989 | 0.3982 |
| 4.587 | 20.65 | 4750 | 15.9417 | 0.4136 | 0.4103 |
| 4.1118 | 21.74 | 5000 | 15.0406 | 0.3966 | 0.3966 |
| 4.1118 | 22.83 | 5250 | 16.1274 | 0.4020 | 0.4016 |
| 3.7338 | 23.91 | 5500 | 15.8530 | 0.3858 | 0.3835 |
| 3.7338 | 25.0 | 5750 | 16.3221 | 0.4090 | 0.4074 |
| 3.4628 | 26.09 | 6000 | 16.5572 | 0.4028 | 0.4017 |
| 3.4628 | 27.17 | 6250 | 16.4879 | 0.3881 | 0.3868 |
| 3.3012 | 28.26 | 6500 | 16.4834 | 0.3997 | 0.3995 |
| 3.3012 | 29.35 | 6750 | 16.2447 | 0.3866 | 0.3858 |
### Framework versions
- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3
|