File size: 4,994 Bytes
30d26d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
license: mit
base_model: haryoaw/scenario-TCR_data-cardiffnlp_tweet_sentiment_multilingual_all_a
tags:
- generated_from_trainer
datasets:
- tweet_sentiment_multilingual
metrics:
- accuracy
- f1
model-index:
- name: scenario-KD-PO-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_all_gamma
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# scenario-KD-PO-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_all_gamma

This model is a fine-tuned version of [haryoaw/scenario-TCR_data-cardiffnlp_tweet_sentiment_multilingual_all_a](https://huggingface.co/haryoaw/scenario-TCR_data-cardiffnlp_tweet_sentiment_multilingual_all_a) on the tweet_sentiment_multilingual dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5245
- Accuracy: 0.5517
- F1: 0.5524

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 88458
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
| 4.8673        | 1.09  | 500   | 4.1044          | 0.4356   | 0.4381 |
| 4.0355        | 2.17  | 1000  | 3.8162          | 0.5004   | 0.4829 |
| 3.4812        | 3.26  | 1500  | 3.3484          | 0.5312   | 0.5299 |
| 3.1323        | 4.35  | 2000  | 3.3401          | 0.5502   | 0.5500 |
| 2.7632        | 5.43  | 2500  | 3.5126          | 0.5471   | 0.5441 |
| 2.5101        | 6.52  | 3000  | 3.5161          | 0.5444   | 0.5412 |
| 2.3266        | 7.61  | 3500  | 3.6769          | 0.5367   | 0.5263 |
| 2.1096        | 8.7   | 4000  | 3.6299          | 0.5513   | 0.5501 |
| 1.972         | 9.78  | 4500  | 3.4289          | 0.5432   | 0.5428 |
| 1.8345        | 10.87 | 5000  | 3.3890          | 0.5502   | 0.5464 |
| 1.711         | 11.96 | 5500  | 3.3365          | 0.5548   | 0.5553 |
| 1.6043        | 13.04 | 6000  | 3.4657          | 0.5529   | 0.5527 |
| 1.4994        | 14.13 | 6500  | 3.3948          | 0.5494   | 0.5500 |
| 1.404         | 15.22 | 7000  | 3.5906          | 0.5529   | 0.5533 |
| 1.3423        | 16.3  | 7500  | 3.5538          | 0.5575   | 0.5555 |
| 1.2991        | 17.39 | 8000  | 3.5762          | 0.5532   | 0.5539 |
| 1.217         | 18.48 | 8500  | 3.6649          | 0.5517   | 0.5518 |
| 1.1763        | 19.57 | 9000  | 3.5238          | 0.5513   | 0.5503 |
| 1.1249        | 20.65 | 9500  | 3.5218          | 0.5436   | 0.5453 |
| 1.0774        | 21.74 | 10000 | 3.7103          | 0.5617   | 0.5622 |
| 1.0558        | 22.83 | 10500 | 3.6698          | 0.5567   | 0.5558 |
| 1.0036        | 23.91 | 11000 | 3.4754          | 0.5648   | 0.5645 |
| 0.9734        | 25.0  | 11500 | 3.5782          | 0.5490   | 0.5483 |
| 0.9614        | 26.09 | 12000 | 3.4920          | 0.5586   | 0.5600 |
| 0.9221        | 27.17 | 12500 | 3.5416          | 0.5440   | 0.5436 |
| 0.905         | 28.26 | 13000 | 3.5065          | 0.5640   | 0.5635 |
| 0.8845        | 29.35 | 13500 | 3.6653          | 0.5463   | 0.5464 |
| 0.8614        | 30.43 | 14000 | 3.5104          | 0.5583   | 0.5571 |
| 0.8414        | 31.52 | 14500 | 3.6002          | 0.5548   | 0.5554 |
| 0.8328        | 32.61 | 15000 | 3.5431          | 0.5544   | 0.5527 |
| 0.8134        | 33.7  | 15500 | 3.5080          | 0.5590   | 0.5585 |
| 0.7973        | 34.78 | 16000 | 3.4150          | 0.5583   | 0.5578 |
| 0.7887        | 35.87 | 16500 | 3.6270          | 0.5486   | 0.5502 |
| 0.7778        | 36.96 | 17000 | 3.6464          | 0.5494   | 0.5491 |
| 0.7662        | 38.04 | 17500 | 3.5100          | 0.5633   | 0.5627 |
| 0.7553        | 39.13 | 18000 | 3.5580          | 0.5532   | 0.5537 |
| 0.7426        | 40.22 | 18500 | 3.4555          | 0.5594   | 0.5583 |
| 0.7494        | 41.3  | 19000 | 3.5871          | 0.5590   | 0.5554 |
| 0.7252        | 42.39 | 19500 | 3.4094          | 0.5590   | 0.5595 |
| 0.7293        | 43.48 | 20000 | 3.4817          | 0.5656   | 0.5661 |
| 0.7103        | 44.57 | 20500 | 3.4964          | 0.5594   | 0.5596 |
| 0.718         | 45.65 | 21000 | 3.4770          | 0.5598   | 0.5593 |
| 0.7147        | 46.74 | 21500 | 3.4938          | 0.5613   | 0.5616 |
| 0.7014        | 47.83 | 22000 | 3.4664          | 0.5571   | 0.5567 |
| 0.6991        | 48.91 | 22500 | 3.4357          | 0.5606   | 0.5606 |
| 0.6944        | 50.0  | 23000 | 3.5245          | 0.5517   | 0.5524 |


### Framework versions

- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3