File size: 5,110 Bytes
b860755
 
 
 
0b31975
 
b860755
 
 
0b31975
 
b860755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---
base_model: haryoaw/scenario-MDBT-TCR_data-cardiffnlp_tweet_sentiment_multilingual_all
datasets:
- tweet_sentiment_multilingual
library_name: transformers
license: mit
metrics:
- accuracy
- f1
tags:
- generated_from_trainer
model-index:
- name: scenario-KD-PO-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_all66sss
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# scenario-KD-PO-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_all66sss

This model is a fine-tuned version of [haryoaw/scenario-MDBT-TCR_data-cardiffnlp_tweet_sentiment_multilingual_all](https://huggingface.co/haryoaw/scenario-MDBT-TCR_data-cardiffnlp_tweet_sentiment_multilingual_all) on the tweet_sentiment_multilingual dataset.
It achieves the following results on the evaluation set:
- Loss: 125.3087
- Accuracy: 0.5552
- F1: 0.5557

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 66
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Accuracy | F1     |
|:-------------:|:-------:|:-----:|:---------------:|:--------:|:------:|
| 196.6841      | 1.0875  | 500   | 166.6670        | 0.3484   | 0.2582 |
| 168.7515      | 2.1751  | 1000  | 157.8051        | 0.4136   | 0.4041 |
| 160.6266      | 3.2626  | 1500  | 153.1391        | 0.4471   | 0.4197 |
| 152.2116      | 4.3502  | 2000  | 150.9196        | 0.4225   | 0.4031 |
| 145.1439      | 5.4377  | 2500  | 145.2500        | 0.4988   | 0.4938 |
| 137.2401      | 6.5253  | 3000  | 145.8920        | 0.4992   | 0.4899 |
| 129.4263      | 7.6128  | 3500  | 139.7630        | 0.5123   | 0.5121 |
| 122.0069      | 8.7004  | 4000  | 142.0804        | 0.5096   | 0.4979 |
| 116.0619      | 9.7879  | 4500  | 142.2508        | 0.5297   | 0.5245 |
| 110.0063      | 10.8755 | 5000  | 136.2582        | 0.5444   | 0.5442 |
| 105.7         | 11.9630 | 5500  | 133.7262        | 0.5390   | 0.5382 |
| 101.5969      | 13.0506 | 6000  | 135.1363        | 0.5370   | 0.5366 |
| 98.3408       | 14.1381 | 6500  | 135.0693        | 0.5417   | 0.5426 |
| 95.2212       | 15.2257 | 7000  | 134.8993        | 0.5494   | 0.5498 |
| 92.8186       | 16.3132 | 7500  | 132.5809        | 0.5328   | 0.5321 |
| 90.2266       | 17.4008 | 8000  | 131.8017        | 0.5328   | 0.5343 |
| 88.4703       | 18.4883 | 8500  | 131.0873        | 0.5235   | 0.5213 |
| 87.1873       | 19.5759 | 9000  | 131.4287        | 0.5382   | 0.5379 |
| 85.7516       | 20.6634 | 9500  | 131.1887        | 0.5455   | 0.5448 |
| 84.7201       | 21.7510 | 10000 | 129.0503        | 0.5463   | 0.5463 |
| 83.2881       | 22.8385 | 10500 | 130.1761        | 0.5432   | 0.5438 |
| 82.0884       | 23.9260 | 11000 | 128.6964        | 0.5355   | 0.5366 |
| 81.8031       | 25.0136 | 11500 | 128.3357        | 0.5421   | 0.5415 |
| 80.7617       | 26.1011 | 12000 | 129.1492        | 0.5428   | 0.5441 |
| 80.189        | 27.1887 | 12500 | 127.5801        | 0.5552   | 0.5565 |
| 79.3389       | 28.2762 | 13000 | 127.4090        | 0.5370   | 0.5387 |
| 78.7626       | 29.3638 | 13500 | 129.6783        | 0.5505   | 0.5514 |
| 78.3347       | 30.4513 | 14000 | 129.3366        | 0.5517   | 0.5505 |
| 77.8829       | 31.5389 | 14500 | 128.1779        | 0.5421   | 0.5412 |
| 77.4036       | 32.6264 | 15000 | 128.5850        | 0.5309   | 0.5308 |
| 76.9029       | 33.7140 | 15500 | 126.4255        | 0.5509   | 0.5509 |
| 76.5128       | 34.8015 | 16000 | 126.3467        | 0.5424   | 0.5429 |
| 76.2921       | 35.8891 | 16500 | 125.5003        | 0.5428   | 0.5446 |
| 75.861        | 36.9766 | 17000 | 126.6583        | 0.5486   | 0.5496 |
| 75.5675       | 38.0642 | 17500 | 126.0611        | 0.5525   | 0.5519 |
| 75.2374       | 39.1517 | 18000 | 126.2538        | 0.5451   | 0.5457 |
| 75.1584       | 40.2393 | 18500 | 126.7418        | 0.5463   | 0.5448 |
| 74.9139       | 41.3268 | 19000 | 126.7482        | 0.5505   | 0.5491 |
| 74.565        | 42.4144 | 19500 | 126.0126        | 0.5494   | 0.5507 |
| 74.3026       | 43.5019 | 20000 | 124.4608        | 0.5563   | 0.5573 |
| 74.4625       | 44.5895 | 20500 | 125.6297        | 0.5563   | 0.5569 |
| 74.1991       | 45.6770 | 21000 | 125.5350        | 0.5498   | 0.5497 |
| 74.0552       | 46.7645 | 21500 | 124.8100        | 0.5552   | 0.5560 |
| 74.0304       | 47.8521 | 22000 | 126.1095        | 0.5482   | 0.5483 |
| 73.8794       | 48.9396 | 22500 | 125.3087        | 0.5552   | 0.5557 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1