File size: 14,388 Bytes
1ac62e4
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f632c950dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f632c950e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f632c950ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f632c950f70>", "_build": "<function ActorCriticPolicy._build at 0x7f632c8d4040>", "forward": "<function ActorCriticPolicy.forward at 0x7f632c8d40d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f632c8d4160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f632c8d41f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f632c8d4280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f632c8d4310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f632c8d43a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f632c8d4430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f632c94f3c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676157186724900691, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPrlXz7KfIk/KpltPh5Xt77tfJs+KnorvgAAAAAAAAAAmocovHEmlj2lQ1m8hNxtvmUDHL0tnNE8AAAAAAAAAADggC8+wX56P1t8lbz95qi+i7jjPVBG770AAAAAAAAAAM1bWD6AfNc+sss7vm8Yfr5PV6o7VnX6vQAAAAAAAAAAhigjPhKnTj5ol2m+Mj6EvjUSPL0QY6C7AAAAAAAAAADmuPw9RSViPpJzHL4UmVC+/yGZvAPJdr0AAAAAAAAAAEBA6j250AA/io96vp5NWL60KhC9AZGePAAAAAAAAAAA5kksvRQUkLo9Dn60fkSur4UVujqmsXczAACAPwAAgD+aI3o84Sz0uoL9hbvE75A8gvj5OyLxer0AAIA/AACAPz3xgD6oKos/Et7kPbz+db7OI2A+eHPlvQAAAAAAAAAAZuC3vawSsj5f7Yg+3nsovkyXhD32yKc9AAAAAAAAAADQCVy+qcvsPhCbBD7Qgp++E5BKvCMHyj0AAAAAAAAAAJriJD3/Ew8+dj8ePvrJUL6NiDE9XgcovAAAAAAAAAAA89q/PUkOAD9IWAK+eSZlvg5DR72S8cQ6AAAAAAAAAACA4ZE9Mmg3PjgIsb1b6Gi+YH0mPMtxHL0AAAAAAAAAAJqjkr34Vrk8KLtTPARyAr6NJj69PFg8PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMPFHUWfUcECUhpRSlIwBbJRNWAGMAXSUR0CWHpUO/cnFdX2UKGgGaAloD0MIAW4WL5b3b0CUhpRSlGgVTScBaBZHQJYfwipvP1N1fZQoaAZoCWgPQwiJKCZvgLlvQJSGlFKUaBVNFwFoFkdAlh/KN6w+uHV9lChoBmgJaA9DCBIR/kXQtHFAlIaUUpRoFU1yAWgWR0CWOjRfF72MdX2UKGgGaAloD0MI4PPDCOHCcECUhpRSlGgVTXEBaBZHQJY6egvlEJB1fZQoaAZoCWgPQwhEp+fdWBJxQJSGlFKUaBVNVAFoFkdAljsQMc6vJXV9lChoBmgJaA9DCAowLH8+mmtAlIaUUpRoFU0IAWgWR0CWPDbutwJgdX2UKGgGaAloD0MIzZIANTXGa0CUhpRSlGgVTUYBaBZHQJY8vx5LRKJ1fZQoaAZoCWgPQwhPdjOjn4NxQJSGlFKUaBVNXQFoFkdAlj4I7q6e5HV9lChoBmgJaA9DCEW5NH5hPHFAlIaUUpRoFU0jAWgWR0CWPkN7SiM6dX2UKGgGaAloD0MI8DMuHAi/cUCUhpRSlGgVTVYBaBZHQJY/5eHBUJh1fZQoaAZoCWgPQwgaU7DGWXhwQJSGlFKUaBVNNAFoFkdAlj/wF9roGXV9lChoBmgJaA9DCKmieJV1FnFAlIaUUpRoFU1BAWgWR0CWQIu7YkE+dX2UKGgGaAloD0MIrUuN0M8wbkCUhpRSlGgVTXIBaBZHQJZBXG6wt8N1fZQoaAZoCWgPQwhaLbDHBCZxQJSGlFKUaBVNPQFoFkdAlkGOkxh2GXV9lChoBmgJaA9DCBwJNNjUMm1AlIaUUpRoFU1YAWgWR0CWQZzmwJPZdX2UKGgGaAloD0MIveE+cms7cECUhpRSlGgVTS0BaBZHQJZCcPUaybB1fZQoaAZoCWgPQwhA+FCipdhtQJSGlFKUaBVNTwFoFkdAlkOLuDzy0HV9lChoBmgJaA9DCHC2uTG9aXFAlIaUUpRoFU07AWgWR0CWRMdnCfpVdX2UKGgGaAloD0MIWP58W7B6b0CUhpRSlGgVTUEBaBZHQJZFSYD1XeZ1fZQoaAZoCWgPQwgq4Qm9vlZxQJSGlFKUaBVNNgFoFkdAlkbiSvC/GnV9lChoBmgJaA9DCFPnUfF/AHFAlIaUUpRoFU03AWgWR0CWR4K15Sm7dX2UKGgGaAloD0MIDi+ISE2Gb0CUhpRSlGgVTX4BaBZHQJZIHgP3BYV1fZQoaAZoCWgPQwhI/mDgOdRwQJSGlFKUaBVNJgFoFkdAlkiGBOHnEHV9lChoBmgJaA9DCNE/wcWKF3BAlIaUUpRoFU04AWgWR0CWSO0hvBJqdX2UKGgGaAloD0MI83FtqJiqbUCUhpRSlGgVTVEBaBZHQJZLzhESdvt1fZQoaAZoCWgPQwhtG0ZB8BJwQJSGlFKUaBVNUwFoFkdAlkvZu/Dcd3V9lChoBmgJaA9DCOxLNh6sQnBAlIaUUpRoFU1TAWgWR0CWTZIIF/x2dX2UKGgGaAloD0MIOurouJoDckCUhpRSlGgVTXcBaBZHQJZN5Ea2nbZ1fZQoaAZoCWgPQwgfaXBb2xFxQJSGlFKUaBVNQQFoFkdAlk3luNxVAHV9lChoBmgJaA9DCM2VQbXBNmxAlIaUUpRoFU1dAWgWR0CWTexNZeRgdX2UKGgGaAloD0MIxQJf0a3Rb0CUhpRSlGgVTUABaBZHQJZPFvWH1vl1fZQoaAZoCWgPQwg5RUdyuQ9xQJSGlFKUaBVNOwFoFkdAllAqX0Gu93V9lChoBmgJaA9DCA/wpIVLkGpAlIaUUpRoFU2xAWgWR0CWUKWDHwPRdX2UKGgGaAloD0MIL8Tqj3BZcUCUhpRSlGgVTVQBaBZHQJZRfposZpB1fZQoaAZoCWgPQwifdvhrssdvQJSGlFKUaBVNKgFoFkdAllGY5cTrV3V9lChoBmgJaA9DCOdtbHYkMW9AlIaUUpRoFU05AWgWR0CWU0DRc/t6dX2UKGgGaAloD0MI2H4yxgcZcUCUhpRSlGgVTTUBaBZHQJZT4SlFc6h1fZQoaAZoCWgPQwiYUMHhhd1uQJSGlFKUaBVNYgFoFkdAllQKKP4mC3V9lChoBmgJaA9DCMi2DDgLUnBAlIaUUpRoFU1JAWgWR0CWVCJXhfjTdX2UKGgGaAloD0MILC0j9R5hbkCUhpRSlGgVTTwBaBZHQJZWhYp2ECh1fZQoaAZoCWgPQwgsflNYKXduQJSGlFKUaBVNTgFoFkdAllccry1/lXV9lChoBmgJaA9DCLMkQE2tZGBAlIaUUpRoFU3oA2gWR0CWV2UtI066dX2UKGgGaAloD0MItYzUe6o2ckCUhpRSlGgVTTYBaBZHQJZYHqjafz11fZQoaAZoCWgPQwg+z582qjVuQJSGlFKUaBVNVQFoFkdAlljc32mHg3V9lChoBmgJaA9DCL2siQW+iEhAlIaUUpRoFUvsaBZHQJZZI+QlruZ1fZQoaAZoCWgPQwh+4gD6fZpvQJSGlFKUaBVNVQFoFkdAllkku6ErXnV9lChoBmgJaA9DCBqH+l3Y03FAlIaUUpRoFU0qAWgWR0CWWcYeDFqBdX2UKGgGaAloD0MIPUhPkUOpcUCUhpRSlGgVTUwBaBZHQJZZ3Sc9W6t1fZQoaAZoCWgPQwgL1GLw8K5wQJSGlFKUaBVNcgFoFkdAlln5ooNNJ3V9lChoBmgJaA9DCIdSexHtHXFAlIaUUpRoFU1UAWgWR0CWW1MuOCGvdX2UKGgGaAloD0MI8fJ0rignbECUhpRSlGgVTTsBaBZHQJZbcVQAMlV1fZQoaAZoCWgPQwjJqgg3WSxxQJSGlFKUaBVNOQFoFkdAlnYlWKdhAnV9lChoBmgJaA9DCAGFevqIy29AlIaUUpRoFU1nAWgWR0CWdwbZOBUadX2UKGgGaAloD0MIGT230FUDcUCUhpRSlGgVTV0BaBZHQJZ3oFfReC11fZQoaAZoCWgPQwimDYelwaFwQJSGlFKUaBVNjwFoFkdAlnldh/iHZnV9lChoBmgJaA9DCFnfwOTGVWtAlIaUUpRoFU0/AWgWR0CWeh4B3iaRdX2UKGgGaAloD0MInUZaKu/rcECUhpRSlGgVTVIBaBZHQJZ7UtHxz7x1fZQoaAZoCWgPQwgZyLPLd0hwQJSGlFKUaBVNdQFoFkdAlnu3+AEt/XV9lChoBmgJaA9DCMizy7d+MXJAlIaUUpRoFU01AWgWR0CWe/Upd8iOdX2UKGgGaAloD0MIUkZcABoibUCUhpRSlGgVTU4BaBZHQJZ8CuSwGGF1fZQoaAZoCWgPQwjtm/urB81wQJSGlFKUaBVNLgFoFkdAlnwHnU2DQXV9lChoBmgJaA9DCMQhG0gX40pAlIaUUpRoFUveaBZHQJZ8F54W1tx1fZQoaAZoCWgPQwgC9WbU/BhyQJSGlFKUaBVNMQFoFkdAlnwfUaya/nV9lChoBmgJaA9DCB2QhH37ZXBAlIaUUpRoFU0kAWgWR0CWfHHQQcxTdX2UKGgGaAloD0MInE1HALfvcECUhpRSlGgVTU0BaBZHQJZ9fXqZ+hJ1fZQoaAZoCWgPQwjhQ4mW/LhxQJSGlFKUaBVNSAFoFkdAln2LAHmig3V9lChoBmgJaA9DCItrfCY78XFAlIaUUpRoFU0rAWgWR0CWgPJp35erdX2UKGgGaAloD0MI1a90Prw2bkCUhpRSlGgVTUkBaBZHQJaBD5ULlV91fZQoaAZoCWgPQwh2MjhKXhtxQJSGlFKUaBVNmwFoFkdAloFte6ZpjHV9lChoBmgJaA9DCLQ+5ZisEnBAlIaUUpRoFU0tAWgWR0CWg+8pkPMCdX2UKGgGaAloD0MI9raZCvGmb0CUhpRSlGgVTYUBaBZHQJaE41DSgGt1fZQoaAZoCWgPQwjuWkI+qA5wQJSGlFKUaBVNYQFoFkdAloVJHNHH3nV9lChoBmgJaA9DCABywoTRonJAlIaUUpRoFU06AWgWR0CWhYqL0jC6dX2UKGgGaAloD0MIr13acNg2cUCUhpRSlGgVTTgBaBZHQJaGLXtjTa11fZQoaAZoCWgPQwjmeXB31vdyQJSGlFKUaBVNQwFoFkdAloZxRZU1h3V9lChoBmgJaA9DCBTrVPleQnBAlIaUUpRoFU1MAWgWR0CWhobeMyaedX2UKGgGaAloD0MIea7vw8GpbkCUhpRSlGgVTUQBaBZHQJaG++10DEF1fZQoaAZoCWgPQwiqJ/OPfgtyQJSGlFKUaBVNUgFoFkdAlob89jgAInV9lChoBmgJaA9DCBe30QBewHJAlIaUUpRoFU05AWgWR0CWh8z06HTJdX2UKGgGaAloD0MIzhsnhfmccECUhpRSlGgVTYcBaBZHQJaIcYGdI5J1fZQoaAZoCWgPQwgkl/+Q/tVvQJSGlFKUaBVNXwFoFkdAlojLgOz6anV9lChoBmgJaA9DCOpYpfRMt2xAlIaUUpRoFU2nAWgWR0CWiVyksSTRdX2UKGgGaAloD0MIpdqn4zHycUCUhpRSlGgVTSoBaBZHQJaKnHWBjF11fZQoaAZoCWgPQwhkk/yIX/9xQJSGlFKUaBVNRgFoFkdAlovJm/WUbHV9lChoBmgJaA9DCP7yyYph13FAlIaUUpRoFU1mAWgWR0CWjF84PwuvdX2UKGgGaAloD0MINxjqsAJZcUCUhpRSlGgVTRoBaBZHQJaNb9Oymhx1fZQoaAZoCWgPQwjjw+xl2ztyQJSGlFKUaBVNSwFoFkdAlo/RmkFfRnV9lChoBmgJaA9DCELooEu4+XJAlIaUUpRoFU0pAWgWR0CWj9Cj1wo9dX2UKGgGaAloD0MIT7D/OjeAcECUhpRSlGgVTXwBaBZHQJaQb84xUNt1fZQoaAZoCWgPQwg3/G66pUpyQJSGlFKUaBVNSQFoFkdAlpC3Adn003V9lChoBmgJaA9DCCqPboRFVG1AlIaUUpRoFU03AWgWR0CWkPRRuTA4dX2UKGgGaAloD0MIF5tWCgGubUCUhpRSlGgVTTIBaBZHQJaRzAKv3al1fZQoaAZoCWgPQwieeM4W0GxyQJSGlFKUaBVNIgFoFkdAlpIMJhOQAHV9lChoBmgJaA9DCIpZL4byPWxAlIaUUpRoFU1tAWgWR0CWkjn7YTTOdX2UKGgGaAloD0MIGa2jqomXcUCUhpRSlGgVTV8BaBZHQJaSTs2NvO11fZQoaAZoCWgPQwholZnSeqtyQJSGlFKUaBVNFQFoFkdAlpKmYa5wwXV9lChoBmgJaA9DCP2iBP1Fi3JAlIaUUpRoFU1bAWgWR0CWk/+pfhMrdX2UKGgGaAloD0MI4IJsWX6ecECUhpRSlGgVTdsBaBZHQJaUnNeMQ3B1fZQoaAZoCWgPQwjwT6kSZextQJSGlFKUaBVNOwFoFkdAlpUWBvrGBHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}